

ARGO

WCET-Aware Parallelization of Model-Based Applications

for Heterogeneous Parallel Systems

H2020-ICT-2015

Project Number: 688131

Deliverable D6.4

 D6.4 Test Case Demonstration and Evaluation Report (First
Increment)

Editors: Dr. Umut Durak
Authors: Dr. Umut Durak, David Mueller, Koray Kasnakli, Dr.

Marcus Bednara
Version: 2
Status: FINAL
Dissemination level: Public (PU)
Filename: D6.4_test_case_demo_and_eval_I1_1.02.docx

ARGO Consortium

Karlsruhe Institute of Technology DE
Scilab Enterprises FR
Recore Systems B.V. NL
Université de Rennes I FR
Technological Educational Institute of Western Greece GR
AbsInt Angewandte Informatik GmbH DE
Deutsches Zentrum für Luft- und Raumfahrt DE
Fraunhofer IIS DE
emmtrix Technologies GmbH DE

© Copyright by the ARGO Consortium

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

2

Version: v1.01 / FINAL Public (PU)

Document revision history

Version Based
on

Date Author Comments / Changes

1v0 04.08.2017 U. Durak, D. Mueller,
K. Kasnakli

Final Version

1v01 1v0 19.10.2017 U. Durak, D. Mueller Final version, proofread for
consistency

1v02 1v01 26.10.2017 M. Bednara, K.
Kasnakli

Final version, proofread for
consistency

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

3

Version: v1.01 / FINAL Public (PU)

Table of Contents

Document revision history .. 2

Table of Contents ... 3

List of Figures ... 4

List of Tables .. 5

Glossary of Terms .. 6

1. Introduction ... 7

1.1 Purpose .. 7

1.2 Overview .. 7

2. Demonstration and Evaluation Specification .. 8

2.1 Enhanced Ground Proximity Warning System (DLR) ... 8

2.1.1 Overview ... 8

2.1.2 Code Generation .. 9

2.1.3 Software-in-the-Loop Testing ... 13

2.2 Polarization Image Processing System (Fraunhofer IIS).. 20

2.2.1 Testing Specifications .. 20

2.2.2 Overview of the Intermediate Steps ... 21

3. Demonstration and Evaluation Results ... 25

3.1 Enhanced Ground Proximity Warning System (DLR) ... 25

3.1.1 Code Generation .. 25

3.1.2 Software-in-the-Loop Testing ... 29

3.2 Polarization Image Processing System (Fraunhofer IIS).. 32

3.2.1 Overview of the Test Results ... 32

3.2.2 Detailed Test Results ... 33

4. Conclusion and Future Work .. 44

4.1 Evaluation Summary ... 44

4.2 Future Work ... 44

4.2.1 Enhanced Ground Proximity Warning System .. 44

4.2.2 Polarization Image Processing System ... 44

5. References ... 45

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

4

Version: v1.01 / FINAL Public (PU)

List of Figures

Figure 1: The test and evaluation workflow for the ARGO EGPWS ... 8

Figure 2: ARGO EGPWS Design Composition ... 9

Figure 3: Scilab Script Generation from Xcos models .. 10

Figure 4: ARGO Toolchain ... 12

Figure 5: Compiler Scripts ... 12

Figure 6: Open-loop Unit Testing ... 14

Figure 7: Test Vectors Construction .. 14

Figure 8: Test Input Selection .. 15

Figure 9: Pass/Fail Criteria .. 15

Figure 10: ARGO EGPWS Close-loop Test Model ... 16

Figure 11: Close-loop Scenario Testing .. 16

Figure 12: Test Vectors Construction .. 16

Figure 13: SIL 02 ARGO EGPWS Scilab Function Block ... 17

Figure 14: Sample Excerpt from Scenario ... 17

Figure 15: Pass/Fail Criteria .. 17

Figure 16: Pass/Fail Criteria .. 18

Figure 17: SIL 04 ARGO EQPWS and Scilab/Xcos Integration .. 19

Figure 18: SIL 04 Pass/Sail Criteria ... 20

Figure 19: ARGO Toolchain Project Structure .. 27

Figure 20: ARGO GPWS Code Excerpt .. 27

Figure 21: HTG Excerpt from Optimized Parallel ARGO GPWS Code 28

Figure 22: Sample SIL 01 Test Report .. 29

Figure 23: An Excerpt from a Sample SIL 02 Test Report .. 30

Figure 24: Sample SIL 03 Test Report .. 31

Figure 25: Parallelization for paROI unit .. 34

Figure 26: Parallelization for paGOCorrection unit .. 35

Figure 27: Parallelization for paDenoise unit ... 36

Figure 28: Parallelization for paInterpolation unit .. 37

Figure 29: Parallelization for paStokes unit ... 39

Figure 30: Parallelization for paAomp unit ... 39

Figure 31: Parallelization for paDolp unit ... 40

Figure 32: Parallelization for Flow ... 40

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

5

Version: v1.01 / FINAL Public (PU)

List of Tables

Table 1: Support Scilab /Xcos Block Utilization in ARGO EGPWS .. 25

Table 2: Newly Added Blocks to the Supported List ... 26

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

6

Version: v1.01 / FINAL Public (PU)

Glossary of Terms

API Application Programming Interface

CG Code Generation

CI Continuous Integration

EGPWS Enhanced Ground Proximity Warning System

HIL Hardware-in-the-Loop

IR Intermediate Representation

HTG Hierarchical Task Graph

SSA Static Single Assignment

SIL Software-in-the-Loop

WCET Worst Case Execution Time

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

7

Version: v1.01 / FINAL Public (PU)

1. Introduction

1.1 Purpose

This document reports the test and evaluation of the ARGO Toolchain using both of our test
cases (Enhanced Ground Proximity Warning System and Polarization Image Processing
System) as specified in Deliverable D6.2 “Test Cases and Requirements Specification”. We
will specify the demonstration and evaluation phases in detail and report the results of
demonstration and evaluation efforts.

This documentation of the demonstration and evaluation is based on the IEEE Standard for
Software and Systems Test Documentation (IEEE Std 829-2008) [1] which provides clear
guidelines for documenting test, demonstration and evaluation efforts. Since this IEEE
standard was developed for a wide range of software systems, not all parts of the standard
are convenient for our specific case. Therefore, we used the standard to tailor and design the
outline of this report.

1.2 Overview

This document is organized as follows: in Section 2 we give the specification of
demonstrations and evaluations based on the “Test Design and Phases” that were previously
described in ARGO Deliverable D6.3 Test cases and Design and Implementation [2]. In
Section 3 we report the results of each demonstration and evaluation specified. Section 4
provides an outlook over the next steps planned in both test cases and Section 5 provides a
list of references.

The overview of the evaluation could be reported as positive. As of the first increment, where
we are standing at the middle of the project schedule, there exists an integrated toolchain
that is provided in a Linux container (as a Docker image). While there are various remarks
resulting from the evaluation that will be introduced in the body of the report, as of the date
the report is written, it is possible to go from a Scilab/Xcos diagram (or Scilab scripts) to
parallel code. Along with that, an extensive evaluation infrastructure has been developed
with a large number of real life industry scale test cases and demonstrations. This
infrastructure is expected to guide the project until the end with end user requirements.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

8

Version: v1.01 / FINAL Public (PU)

2. Demonstration and Evaluation Specification

2.1 Enhanced Ground Proximity Warning System (DLR)

2.1.1 Overview

The requirements of ARGO EGPWS are documented in D6.2 Test Cases and Requirements
Specification [3]. The test and evaluation workflow with ARGO EGPWS is depicted in Figure
1.

The description of the items in Figure 1 can be given as follows:

Code Generation (CG) is the generation of target deployable code using the ARGO
Toolchain. The code generation is tested and evaluated in three steps using the ARGO
Toolchain as follows:

CG 01: Scilab script generation from Xcos models.
CG 02: Sequential C code generation from Scilab script.
CG 03: Parallel C code generation from sequential C code.

Software-in-the-Loop Testing (SIL) is the testing of generated code. It is essentially non
real-time and targets at functional verification. SIL testing is being done repetitively,
corresponding to the steps of code development as listed below:

SIL 01: Open-loop tests are executed for Scilab scripts generated from Xcos model
elements in order to verify that the outcomes of script execution are complying with
those of the Xcos model elements.
SIL 02: Closed-loop tests are executed for Scilab scripts generated from the overall
Xcos model in order to verify that the outcomes of script execution are complying with
those of the overall Xcos model.
SIL 03: Open-loop tests are executed for sequential C code generated from the
Scilab scripts that correspond to Xcos model elements in order to verify that the
outcomes of sequential C code execution are complying with the Scilab scripts for
Xcos model elements.
SIL 04: Closed-loop tests are executed for sequential C code generated from the
Scilab scripts of the overall Xcos model elements in order to verify that the outcomes
of sequential C code execution are complying with the Scilab scripts for the overall
Xcos model.
SIL 05: Closed-loop tests are executed for generated parallel C code of the overall
Xcos model in order to verify that the outcomes of parallel C code execution are
complying with the sequential C code for the overall Xcos model. This task is planned
for increment 2 using both the RECORE FlexaWare SDE and InvasIC API.

Xcos
model

Figure 1: The test and evaluation workflow for the ARGO EGPWS

Scilab
script

Sequential
Code

Parallel
Code

CG 01 CG 02

SIL 01, SIL02 SIL 03, SIL04, HIL 01 SIL 05, HIL 02, HIL 03

CG 03

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

9

Version: v1.01 / FINAL Public (PU)

Hardware-in-the-Loop Testing (HIL) is the testing of generated C code on a target platform
essentially in a real-time setting. It enables the verification of non-functional requirements.
This task is planned for increment 2 and will be done in the following three steps:

HIL 01: closed loop tests will be executed for generated sequential C code on a
single core target. The plant model is executed on an x86 PC running on a real-time
operating system.
HIL 02: closed loop tests will be executed for generated parallel C code on the ARGO
RECORE platform. The plant model is executed on an x86 PC running on a real-time
operating system.
HIL 03: Piloted test runs will be executed with the generated parallel C code on the
ARGO RECORE platform integrated into DLR’s AVES.

2.1.2 Code Generation

Code Generation (CG) is the generation of target deployable code using the ARGO
Toolchain as described in the following subsections.

Figure 2: ARGO EGPWS Design Composition

2.1.2.1 Code Generation 01 (CG 01)

Identification: CG 01 Scilab script generation from Xcos models.

Purpose: The purpose of GC 01 is to test the Scilab script generation feature of the ARGO
Toolchain. The functionality assigned to the Scilab/Xcos Front-End is the translation of input
Xcos models to Scilab scripts. GC 01 addresses the objectives OBJ1, OBJ2 and OBJ5 as
follows:

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

10

Version: v1.01 / FINAL Public (PU)

OBJ1: The availability of the ARGO Toolchain will be demonstrated by generating Scilab
scripts for supported Xcos block set as described in document D 3.1 Intermediate
 Representation and Sequential Code Generation.

OBJ2: Subjective assessment will be provided about the comparison of Scilab/Xcos Front-
 End and MATLAB/Simulink.

OBJ5: The code generation will be executed for the comprehensive time-critical use case
 ARGO EGPWS

Approach: The overall ARGO EGPWS model and individual model elements that are
subject to code generation are depicted in Figure 2. In this step Scilab scripts will be
generated for single Xcos model elements. This is currently carried out by the Scilab/Xcos
Front-End (Figure 3).

Figure 3: Scilab Script Generation from Xcos models

The Pass/Fail Criteria of this step is the generation of Scilab scripts without any error. We
expect to a folder with the name generated, containing two Scilab files, namely
ARGO_GPWS.sci and ARGO_GPWS_scenario.sce. The plausibility test is conducted by
running the ARGO_GPWS_scenario.sce which executes the ARGO_GPWS.sci with random
inputs. One successful execution is enough to claim the success of this step.

The following steps were followed to prepare the setup for the test case:

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

11

Version: v1.01 / FINAL Public (PU)

 Scilab 5.5.2 was installed.

 Xcos Code Generator was installed in Scilab using atomsInstall.

2.1.2.2 Code Generation 02 (CG 02)

Identification: CG 02 Sequential C-code generation from Scilab script.

Purpose: The purpose of GC 02 is to test the sequential C-code generation feature of the
ARGO Toolchain. The functionality assigned to the ARGO Toolchain is transforming input
Scilab script to sequential C-code. GC 02 addresses the objectives OBJ1, OBJ2 and OBJ5
as follows:

OBJ1: The availability of the ARGO Toolchain will be demonstrated by conducting sequential
C-code generation for the supported Xcos block set described in document D3.1
Intermediate Representation and Sequential Code Generation.

OBJ2: Subjective assessment will be provided about the comparison of the ARGO Toolchain
and MATLAB/Simulink.

OBJ5: The code generation will be executed for the comprehensive time-critical use case
ARGO EGPWS.

Approach: The below Scilab scripts are subject to code generation:

Overall ARGO EGPWS:

ARGO_GPWS_scenario.sce

ARGO_GPWS.sci

Mode 1: Excessive Rate of Descent:

MODE_1_Excessive_Rate_of_Descent_scenario.sce
MODE_1_Excessive_Rate_of_Descent.sci

Mode 2: Excessive Terrain Closure Rate:

MODE_2_Excessive_Terrain_Closure_Rate_scenario.sce

MODE_2_Excessive_Terrain_Closure_Rate.sci

Mode 3: Altitude Loss After Take-off:

MODE_3_Altitude_Loss_After_Takeoff_scenario.sce

MODE_3_Altitude_Loss_After_Takeoff.sci

Mode 4: Unsafe Terrain Clearance:

MODE_4_Unsafe_Terrain_Clearance_scenario.sce

MODE_4_Unsafe_Terrain_Clearance.sci

Mode 5: Deviation Below Glideslope:

MODE_5_Deviation_Below_Glideslope_scenario.sce

MODE_5_Deviation_Below_Glideslope.sci

Data Output Management:

Data_Output_Management_scenario.sce

Data_Output_Management.sci

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

12

Version: v1.01 / FINAL Public (PU)

Figure 4: ARGO Toolchain

Sequential C code generation is carried out using the ARGO Toolchain (Figure 4). Compiler
scripts are utilized for the automation of the process. Figure 5 presents two compiler scripts,
flow_call.cs and argo-egpws-project.cs that set the project parameters and call the argo-tool-
flow.cs for the code generation. argo-tool-flow.cs can execute the whole process from Xcos
model to parallel code. Here within this test we start with step 2 (Scilab script) and only
consider the outputs that are created for sequential code generation.

Figure 5: Compiler Scripts

The Pass/Fail Criteria of this step is the generation of sequential C code that compiles
without any error.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

13

Version: v1.01 / FINAL Public (PU)

2.1.2.3 Code Generation 03 (CG 03)

Identification: CG 03 Parallel C-code generation from sequential C-code.

Purpose: The purpose of GC 03 is to test the parallel C-code generation feature of ARGO
Toolchain. The functionality assigned to the ARGO Toolchain is transforming input sequential
C-code to parallel C-code. GC 03 addresses the objectives OBJ1, OBJ2 and OBJ5 as
follows:

OBJ1: The availability of the ARGO toolchain will be demonstrated by conducting parallel C
code generation for the supported Xcos block set described in document D 3.1 Intermediate
Representation and Sequential Code Generation.

OBJ2: Subjective assessment will be provided about the comparison of the ARGO Toolchain
and MATLAB/Simulink.

OBJ5: The code generation will be executed for the comprehensive time-critical use case
ARGO EGPWS.

Approach: The below Scilab scripts are subject to code generation:

Overall ARGO EGPWS:

ARGO_GPWS_scenario.h

ARGO_GPWS_scenario.c

ARGO_GPWS.h

ARGO_GPWS.c

The sequential C-code generation is carried out using the ARGO Toolchain (Figure 3).
Compiler scripts are utilized for the automation of the process. We used the compiler scripts
from CG 02 that are presented in Figure 5, namely flow_call.cs and argo-egpws-project.cs.
They set the project parameters and call the argo-tool-flow.cs for the code generation. argo-
tool-flow.cs is meant to execute the whole process from Xcos model to parallel code. Here
within this test we start with step 3 (Sequential C-Code) and check the outputs that will be
created for the parallel C-code.

The Pass/Fail Criteria of this step is the generation of parallel C code that compiles without
any error.

2.1.3 Software-in-the-Loop Testing

Software-in-the-Loop Testing (SIL) is executing the generated code by putting it in a test
loop. It is essentially non real-time and targets functional verification. SIL testing is being
done repetitively, corresponding to the steps of code development as listed below:

2.1.3.1 Software-in-the-Loop Testing 01 (SIL 01)

Identification: SIL 01 Open-loop testing for Scilab scripts generated from Xcos model
elements

Purpose:

Unit tests are executed for Scilab scripts generated from Xcos model elements in order to
verify that the outputs of the scripts are complying with those of the Xcos model elements.
SIL 01 addresses the objectives OBJ1 and OBJ5 as follows:

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

14

Version: v1.01 / FINAL Public (PU)

OBJ1: The functionality of the ARGO Toolchain will be demonstrated by conducting
Software-in-the-loop tests on the Scilab scripts that it generates. SIL 01 will verify the correct
code generation for Scilab Scripts within the ARGO Toolchain.

OBJ5: This test case demonstrates the industry standard testing approaches with the ARGO
Toolchain for the comprehensive time-critical use case ARGO EGPWS.

Approach: The below Scilab scripts are subject to testing:

Mode 1: Excessive Rate of Descent:

MODE_1_Excessive_Rate_of_Descent.sci

Mode 2: Excessive Terrain Closure Rate:

MODE_2_Excessive_Terrain_Closure_Rate.sci

Mode 3: Altitude Loss After Take-off:

MODE_3_Altitude_Loss_After_Takeoff.sci

Mode 4: Unsafe Terrain Clearance:

MODE_4_Unsafe_Terrain_Clearance.sci

Mode 5: Deviation Below Glideslope:

MODE_5_Deviation_Below_Glideslope.sci

Data Output Management:

Data_Output_Management.sci

Figure 6: Open-loop Unit Testing

Figure 7: Test Vectors Construction

The approach used in SIL 01 can be presented as open-loop unit testing in a black-box
fashion (Figure 6). The test vectors and expected outputs are constructed using the
requirements specifications (Figure 7). The interfaces of the components of the ARGO
EGPWS model are executed extensively regarding the range coverage (Figure 8).

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

15

Version: v1.01 / FINAL Public (PU)

Figure 8: Test Input Selection

Figure 9: Pass/Fail Criteria

The Pass/Fail Criteria of this step is the conformance of the script outputs with the expected
outputs which are aligned with the source Scilab/Xcos model output (Figure 9).

2.1.3.2 Software-in-the-Loop Testing 02 (SIL 02)

Identification: SIL 02 Closed-loop testing for Scilab scripts generated from the overall
ARGO EGPWS Scilab/Xcos model.

Purpose:

Scenario tests are executed for Scilab scripts generated from the overall ARGO EGPWS
Scilab/Xcos model in order to verify that the outputs of the scripts are complying with those of
the Xcos model. SIL 02 addresses the objectives OBJ1 and OBJ5 as follows:

OBJ1: The functionality of the ARGO Toolchain will be demonstrated by conducting
Software-in-the-loop tests on the Scilab scripts that it generates. SIL 02 will verify the correct
code generation for Scilab scripts within the ARGO Toolchain.

OBJ5: This test case demonstrates the industry standard testing approaches with ARGO
Toolchain for the comprehensive time-critical use case ARGO EGPWS.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

16

Version: v1.01 / FINAL Public (PU)

Figure 10: ARGO EGPWS Close-loop Test Model

Approach: This is the Scilab script that is subject to testing:

ARGO_GPWS.sci

Figure 11: Close-loop Scenario Testing

Figure 12: Test Vectors Construction

The approach used in SIL 02 can be presented as closed-loop scenario testing in a black-
box fashion (Figure 11). Closed-loop testing reintegrates the generated script/code back into
the Xcos schema and executes the test scenario with a plant and the system under test
(SUT) together (Figure 10). The plant in the SIL 02 case is the aircraft (Airbus A320) and the
SUT is the ARGO EGPWS. A Scilab Function Block (scifunc_block_m) of Xcos is utilized to
integrate the auto generated Scilab script back into the model schema (Figure 13).

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

17

Version: v1.01 / FINAL Public (PU)

Figure 13: SIL 02 ARGO EGPWS Scilab Function Block

The scenarios that contain the initial state and the course of events during the test execution
are applied to the test model; the model outputs are compared to the expected outputs and
the results are reported. An excerpt from a sample scenario is given in Figure 14. Scenarios
are constructed using the requirement specifications in order to cover the 5 modes of the
ARGO EGPWS (Figure 15). The inputs are classified regarding the decision trees of each
mode. All possible output values of modes are addressed by the designed scenarios.

Figure 14: Sample Excerpt from Scenario

Figure 15: Pass/Fail Criteria

The Pass/Fail Criteria of this step is the conformance of the script outputs with outputs of the
source Scilab/Xcos model. As presented in Figure 15, if the source Scilab/Xcos model is
passing the test in a particular scenario, we are expecting the script to also pass.

2.1.3.3 Software-in-the-Loop Testing 03 (SIL 03)

Identification: SIL 03 Open-loop testing for sequential C-code generated from Scilab scripts
for Xcos model elements

Purpose:

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

18

Version: v1.01 / FINAL Public (PU)

Unit tests are executed for sequential C-code generated from Scilab scripts for Xcos model
elements in order to verify that the outcomes of sequential C-code are complying with the
Xcos model elements. SIL 03 addresses objectives OBJ1 and OBJ5 as follows:

OBJ1: The functionality of the ARGO Toolchain will be demonstrated with conducting
Software-in-the-loop tests on the generated sequential C-code. SIL 03 will verify the correct
code generation of ARGO Toolchain for sequential C-code.

OBJ5: This test case demonstrates the industry standard testing approaches with ARGO
Toolchain for the comprehensive time-critical use case ARGO EGPWS

Approach: The below C-files are subject to testing:

Mode 1: Excessive Rate of Descent:

MODE_1_Excessive_Rate_of_Descent.c

Mode 2: Excessive Terrain Closure Rate:

MODE_2_Excessive_Terrain_Closure_Rate.c

Mode 3: Altitude Loss After Take-off:

MODE_3_Altitude_Loss_After_Takeoff.c

Mode 4: Unsafe Terrain Clearance:

MODE_4_Unsafe_Terrain_Clearance.c

Mode 5: Deviation Below Glideslope:

MODE_5_Deviation_Below_Glideslope.c

Data Output Management:

Data_Output_Management.c

The approach used in SIL 03 can be presented as open-loop unit testing in a black-box
fashion (Figure 6). The test vectors and expected results are constructed using the
requirements specifications (Figure 7). The interfaces of the components of the EGPWS
model are exercised extensively regarding the range coverage (Figure 8).

Figure 16: Pass/Fail Criteria

The Pass/Fail Criteria of this step is the conformance of the sequential C-code outputs with
the expected outputs which are aligned with the source Scilab/Xcos model output (Figure 9).

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

19

Version: v1.01 / FINAL Public (PU)

2.1.3.4 Software-in-the-Loop Testing 04 (SIL 04)

Identification: SIL 04 Closed-loop testing for sequential C-code generated from Scilab
scripts for the overall EGPWS Scilab/Xcos model

Purpose:

Scenario tests are executed for sequential C-code generated from Scilab scripts for the
overall EGPWS Scilab/Xcos model in order to verify that the outputs of the sequential C-code
are complying with those of the Xcos model. SIL 04 addresses the objectives OBJ1 and
OBJ5 as follows:

OBJ1: The functionality of the ARGO Toolchain will be demonstrated by conducting
Software-in-the-loop tests on the generated sequential C-code. SIL 04 will verify the correct
code generation of sequential C-code within the ARGO Toolchain.

OBJ5: This test case demonstrates the industry standard testing approaches with ARGO
Toolchain for the comprehensive time-critical use case ARGO EGPWS.

Approach: This is the C-file that is subject to testing:

ARGO_GPWS.c

The approach used in SIL 04 can be presented as closed-loop scenario testing in a black-
box fashion (Figure 11). Closed-loop testing reintegrates the generated script/code back into
the Xcos schema and executes the test scenario with a plant and the SUT (Figure 10). The
plant in the SIL 04 case is the aircraft (Airbus A320) and the system under test is the ARGO
EGPWS.

There is a number of ways for reintegrating the generated script/code back into the Xcos
schema. We have chosen to compile the sequential C-code as a separate process using the
real-time simulation architecture 2Simulate [4] of DLR. Thereafter, the executable that is
used in SIL 04 will later be used in flight simulator integration studies. Scilab/Xcos UDP
Blocks are utilized to integrate the separate ARGO GPWS process back into the model
schema (Figure 17).

Figure 17: SIL 04 ARGO EQPWS and Scilab/Xcos Integration

The scenarios that contain the initial state and the course of events during the test execution
are applied to the test model; the model outputs are compared to expected outputs and the
results are reported. An excerpt from a sample scenario is given in Figure 14. Scenarios are
constructed using the requirement specifications in order to cover the 5 modes of ARGO
EGPWS (Figure 15). The inputs are classified regarding the decision trees of each mode. All
possible output values of modes are addressed by the designed scenarios.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

20

Version: v1.01 / FINAL Public (PU)

Figure 18: SIL 04 Pass/Sail Criteria

The Pass/Fail Criteria of this step is the conformance of the script outputs with the outputs of
the source Scilab/Xcos model. As presented in Figure 18, if the source Scilab/Xcos model is
passing the test in a particular scenario, we are expecting the C-code to pass as well.

2.2 Polarization Image Processing System (Fraunhofer IIS)

Referring to D6.3 Test cases and Design and Implementation [2], phase 2b is the concern of
this documentation, which corresponds to Software-in-the-loop testing. Model-in-the-loop and
Hardware-in-the-loop tests are planned for the second increment of the corresponding
deliverable. Please note that the code generation is considered as a submodule of Software-
in-the-loop testing in the IIS use-case instead of separate modules as in the DLR use-case.

Table 2 in D6.3 shows Test Case Phases vs. Measurements [2]. The objectives that have to
be achieved in this increment are given as OBJ1 and OBJ5 and the first part of OBJ2.

2.2.1 Testing Specifications

The objects to be tested are divided into the following two categories.

Unit Tests: The macros paROI(), paGOCorrection(), paDenoise(), paInterpolation(),
paStokes(), paAomp(), paDolp() based on D6.3 Test cases and Design and
Implementation [2] with minor changes (refer to section 2.2.2.2) are tested considering the
principle of least effort. For that purpose, the main Scilab script argo.sci and function
testCaseDemoPolkaFlow() are modified into argo_macroname.sci and
tCDPF_macroname() respectively. The modifications consist of replacing the real data with
some predefined matrix and commenting out all macros other than the one under test. An
exception to this rule is the macro paROI(), which crops the input matrix into the desired size.
For this increment, the TCP/IP interface is left out. In order to execute the unit tests, a small
compiler script unit_test_call.cs is written.

Flow Test: The processing pipeline described in D6.3 Test cases and Design and
Implementation [2] is the concatenation of the macro blocks mentioned in Unit tests. The
main Scilab script argo_predef.sci and function tCDPF_predef() are again the modified

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

21

Version: v1.01 / FINAL Public (PU)

versions, which feed a predefined matrix into the pipeline and leave out the TCP/IP interface.
In order to execute the flow test, a small compiler script flow_call.cs is written.

The main purpose of this increment will be the correct code generation - parallel as well as
sequential. The resulting matrices from unit and flow tests computed by Scilab, generated
sequential code and parallel code respectively are compared against each other visually for
Scilab output and via the built-in function CompareOutputs() inside the GeCoS framework
for sequential and parallel outputs.

Testing for WCET-awareness and for TCP/IP interface is planned to be tested in the second
increment of this deliverable.

Expected outputs are binaries of generated sequential and parallel C-codes and the
intermediate files to generate those binaries, which are going to be described in detail in the
next section.

2.2.1.1 Approach

All tests are done in the Eclipse environment of the ARGO Toolchain which is integrated into
a docker image. To be able to test the components, we have to call the corresponding units
from within the GeCoS framework based on the Eclipse environment inside this image.

Following are the necessary steps for an end-user to generate the resulting sequential and
parallel codes.

For Unit Tests, unit_test_call.cs should be executed, which defines the project name and
the relevant output folder. The same should be done with flow_call.cs script for Flow Test.

2.2.1.2 Item pass/fail criteria

An object passes the test if the execution of the sequential or parallel code does not trigger
an error and if the sequential and parallel code provide identical results.

2.2.2 Overview of the Intermediate Steps

Here is a general overview of the intermediate steps for the ARGO Toolchain to generate
sequential and parallel code and its executables. For detailed information please refer to
documents D5.1 Interface Specification [5] and D3.2 Algorithms for cross layer programming
[6]. Greyed-out titles are not subject of this increment.

Scilab to C via Emmtrix Code Generator

Code generation with WCET pragmas and end-user constraints

Intermediate Representation (IR) and Hierarchical Task Graph (HTG) Generation

Generation of GeCoS IR, Static Single Assignment (SSA) and HTG

Code Transformations

Predictability enhancement optimization to expose more parallelism

Core-level code-snippet WCET Estimation

WCET calculations at different granularities using aiT WCET analyzer

Parallelization / Optimize Program Schedule

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

22

Version: v1.01 / FINAL Public (PU)

Optimal task and data mapping

Parallel Program IR

Extended GeCoS IR with channel-based communication and synchronization

System-Level WCET

Final Core-level WCET Estimation

Architecture Specific Post-Optimizer

Parallel Code Generation

Parallel C code based on IR of parallel program

Sequential / Parallel Code Comparison

2.2.2.1 Inputs, outputs, and special requirements

Please refer to Section 3.2.2. part h) for the resulting output folder from the toolchain and its
explanations and correspondences to the following steps of the ARGO-Flow.

 Scilab to C via emmtrix Code Generator

Inputs: Scilab source code of unit tests and flow test with end-user constraints

Outputs: Sequential platform independent C code based on C99 with code
annotations as comments or pragmas

Special Requirements: -

 Intermediate Representation (IR) and Hierarchical Task Graph (HTG) Generation

Inputs: Annotated C code

Outputs: IR, SSA and HTG with annotations

Special Requirements: -

 Code Transformations

Inputs: HTG with annotations

Outputs: optimized HTG with loop bounds and data array size tags for validity for
scratchpad memory mapping

Special Requirements: -

 Core-level code-snippet WCET Estimation

Inputs: HTG with loop bounds and data array size tags for validity for scratchpad
memory mapping

Architecture ADL, to identify target architecture for aiT config file generation

Outputs: For all tasks (hierarchical and leaf) 2 outputs corresponding to 2 scenarios,
assuming code and data in local scratchpad memory or in external DRAM

Special Requirements: aiT license file

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

23

Version: v1.01 / FINAL Public (PU)

 Parallelization / Optimize Program Schedule

Inputs: HTG with WCET times for each leaf tasks, End-user constraints, ADL
description with communication timing information

Outputs: Complete map of each leaf task nodes in HTG on available cores, complete
scheduling info of task nodes in HTG, Preliminary decision of data allocation for each
variable to a specific memory hierarch

Special Requirements: -

 Parallel Program IR

Inputs: Annotated HTG from mapping and scheduling

Outputs: 1st version of parallel IR with abstract communication between tasks

Special Requirements: -

 Parallel Code Generation

Inputs: in-memory IR of parallel program

Outputs: set of C source and header files containing the platform optimized parallel
program.

Special Requirements: -

 Sequential / Parallel Code Comparison

Inputs: Application executable

Outputs: Outcome of the test as succeeded or failed

Special Requirements: -

2.2.2.2 User Constraints for Parallelization

There are mainly two emmtrix functions for the IIS-use-case constraints for the generated
code to be data parallel. For more information, please refer the documentation emmtrix Code
Generator Reference Guide [7]

//EMX?: emx_var_split(data,sizex,sizey,…);

The function above is used for splitting the data array into sub-tiles in corresponding
dimensions, in order to be able to distribute those tiles among cores. For that purpose the
function below is used before each C-loop, where the data-distribution among cores is
required.

//EMX?: emx_perf_loopfission();

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

24

Version: v1.01 / FINAL Public (PU)

The user should split the data according to the number of cores which are available on the
target hardware, by inserting these functions to the desired locations at the Scilab source
code

The split data arrays are then propagated internally to and from the functions such that the
memory tiles of the scratchpad are fixed with tiles of corresponding data over function calls,
with the requirement that the size of the scratchpad is big enough.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

25

Version: v1.01 / FINAL Public (PU)

3. Demonstration and Evaluation Results

3.1 Enhanced Ground Proximity Warning System (DLR)

3.1.1 Code Generation

3.1.1.1 Code Generation 01 (CG 01)

The test is executed in two levels. The first level targeted the model elements that have been
presented in Figure 2, whereas the second level is applied to the overall model.

Scilab scripts are successfully generated for the following model elements and the overall
model:

Mode 1: Excessive Rate of Descent

Mode 2: Excessive Terrain Closure Rate

Mode 3: Altitude Loss After Take-off

Mode 4: Unsafe Terrain Clearance

Mode 5: Deviation Below Glideslope

Data Output Management

The achievement of OBJ1 and OBJ5 is demonstrated by the successful generation of the
Scilab scripts. 30 supported Xcos blocks are described in D3.1 Intermediate Representation
and Sequential Code Generation. In iteration 1 of the ARGO EGPWS 14 of them are used
(Table 1). The list is further enhanced by 4 more blocks that are required later in model
development stage (Table 2).

Table 1: Support Scilab /Xcos Block Utilization in ARGO EGPWS

Scilab Xcos Blocks Status Scilab Xcos Blocks Status

ABS INTRPLBLK_f Tested

BIGSOM_f LOGICAL_OP Tested

CLOCK_c Tested NRMSOM_f

CONST_m Tested OUT_f Tested

CONVERT POWBKL_f

DEMUX PRODUCT

DERIV RELATIONALOP Tested

DOLLAR_f Tested SATURATION Tested

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

26

Version: v1.01 / FINAL Public (PU)

EXTRACTOR Tested SINBLK_f

FROM SQRT

FROMWSB SUMMATION Tested

GAINBLK_f Tested SWITCH2_m Tested

generic_block3 SUPER_f Tested

GOTO TANBLK_f

IN_f Tested TrigFun

Table 2: Newly Added Blocks to the Supported List

Scilab Xcos Blocks Status Scilab Xcos Blocks Status

INTRP2BLK_f Tested MUX Tested

MAXMIN Tested TIME_f Tested

For OBJ2, the subjective assessment about the comparison of Scilab/Xcos Front-End and
MATLAB/Simulink would be as follows: The current code generation front-end that is being
provided by Scilab/Xcos is simple to use and straight forward. It provides the comfortable
automation in code generation like MATLAB/Simulink. However, it is to be mentioned that the
maturity and the feature set of COTS Simulink Coder exceed the limits of what is provided
within the scope of the ARGO project. An example that Scilab/Xcos Front-End fails to provide
is diagnostic features which will create warnings for possible problems.

3.1.1.2 Code Generation 02 (CG 02)

In this step, we successfully generated sequential C-code which is located in a folder named
results\scilab2c (Figure 19). The file set includes C files that correspond to x_scenario.sce
and x.sci and all the dependencies with a make file. Figure 19 depicts the output C-files for
the overall ARGO GPWS Scilab script.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

27

Version: v1.01 / FINAL Public (PU)

Figure 19: ARGO Toolchain Project Structure

The following steps were followed to prepare the setup for the test case:

 The Docker image that contains the ARGO Toolchain is set up.

 The projects are prepared for each code generation case.

Figure 20: ARGO GPWS Code Excerpt

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

28

Version: v1.01 / FINAL Public (PU)

When the compiler scripts are executed, sequential C-code is successfully generated. A
sample excerpt is given in Figure 20. The automation script compiled the auto generated file
and executed it with random inputs.

The achievement of OBJ1 and OBJ5 is demonstrated by the successful generation of the
sequential C code. For OBJ2, the subjective assessment about the comparison of ARGO
Toolchain and MATLAB/Simulink would be as follows: Currently, the ARGO Toolchain is
under development. The snapshot that was executed in this test was stable and successfully
generated code, but the current user experience and feature set is not yet comparable to
Simulink Coder or other COTS code generation tools.

3.1.1.3 Code Generation 03 (CG 03)

In this step, we successfully generated parallel C-code for a 4-core target architecture. One
of the cores is assigned to data processing and the code is optimized for the other 3 cores.

Figure 21: HTG Excerpt from Optimized Parallel ARGO GPWS Code

The following steps were followed to prepare the setup for the test case:

 The Docker image that contains the ARGO Toolchain is set up.

 The projects are prepared for each code generation case.

When the compiler scripts are executed, parallel C-code is successfully generated. The
generated code files were located in a folder named results\codegen\pout. The Hierarchical
Task Graph (HTG) files for the optimized parallel C-code are presented under
results\paropt\dotsol. An excerpt from the HTG of optimized parallel C-code for ARGO
EGPWS is given in Figure 21. Three different colours designate three processors.

The generated parallel C-code was compiled using InvasIC API on PC platform (in the
ARGO Docker container) and the executable is executed with random inputs.

The achievement of OBJ1 and OBJ5 is demonstrated by the successful generation of the
parallel C code. For OBJ2, the subjective assessment about the comparison of ARGO

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

29

Version: v1.01 / FINAL Public (PU)

Toolchain and MATLAB/Simulink would be as follows: Currently, the ARGO Toolchain is
under development. Parallel code generation is the core focus of the development effort. The
snapshot that was exercised in this test was just stable. Successful parallel code generation
was only possible with heavy involvement of the developers. The current user experience is
not yet comparable to Simulink Coder or other COTS code generation tools.

3.1.2 Software-in-the-Loop Testing

3.1.2.1 Software-in-the-Loop Testing 01 (SIL 01)

The tests are executed using a test harness developed by DLR. The harness executes the
Scilab scripts with the selected test inputs, compares their outputs with the expected outputs
and generates test reports. A sample test report is provided in Figure 22.

Figure 22: Sample SIL 01 Test Report

In total, 358 test cases are executed for the following 6 scripts under test with the following
distribution:

Mode 1: Excessive Rate of Descent: 67 Test Cases

Mode 2: Excessive Terrain Closure Rate: 14 Test Cases

Mode 3: Altitude Loss After Take-off: 157 Test Cases

Mode 4: Unsafe Terrain Clearance: 16 Test Cases

Mode 5: Deviation Below Glideslope: 90 Test Cases

Data Output Management: 14 Test Cases

All test cases were rated successful. The achievement of OBJ1 and OBJ5 is demonstrated
by verifying that the Scilab scripts generated from Scilab/Xcos blocks that are listed in Table
1 and Table 2 are functioning properly in the comprehensive time-critical use case ARGO
EGPWS.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

30

Version: v1.01 / FINAL Public (PU)

3.1.2.2 Software-in-the-Loop Testing 02 (SIL 02)

The tests are executed using a test harness developed by DLR. The harness executes the
scenarios, compares the EGPWS outputs in these scenarios with the expected ones and
generates test reports. An excerpt from a test report is provided in Figure 23.

Figure 23: An Excerpt from a Sample SIL 02 Test Report

In total, 1061 test cases are executed regarding the requirements of 5 modes with the
following distribution:

Mode 1: Excessive Rate of Descent: 13 Test Cases

Mode 2: Excessive Terrain Closure Rate: 252 Test Cases

Mode 3: Altitude Loss After Take-off: 9 Test Cases

Mode 4: Unsafe Terrain Clearance: 759 Test Cases

Mode 5: Deviation Below Glideslope: 28 Test Cases

When these 1061 test cases are applied to the ARGO EGPWS Scilab/Xcos model (Model-in-
the-Loop testing), currently 770 of them are rated successful. When the same tests are
applied to the auto-generated Scilab scripts, the failing test cases are conformant with the
ones failing with the Xcos EGPWS model. So the Xcos model and the auto-generated Scilab
script are giving the same outputs in all cases.

It is important to note that the debugging and bug fixing of Xcos EGPWS model for the failing
test cases is in progress.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

31

Version: v1.01 / FINAL Public (PU)

The achievement of OBJ1 and OBJ5 is demonstrated by verifying that the Scilab scripts
generated for the Scilab/Xcos blocks that are listed in the Table 1 and Table 2 are
functioning properly in the comprehensive time-critical use case ARGO EGPWS.

3.1.2.3 Software-in-the-Loop Testing 03 (SIL 03)

The tests are executed using a test harness developed by DLR. The harness executes the
sequential C-files with the selected test inputs, compares their outputs with the expected
outputs and generates test reports. A sample test report is provided in Figure 24.

Figure 24: Sample SIL 03 Test Report

In accordance with SIL 01, 358 test cases are executed for the following 6 scripts under test
with the following distribution:

Mode 1: Excessive Rate of Descent: 67 Test Cases

Mode 2: Excessive Terrain Closure Rate: 14 Test Cases

Mode 3: Altitude Loss After Take-off: 157 Test Cases

Mode 4: Unsafe Terrain Clearance: 16 Test Cases

Mode 5: Deviation Below Glideslope: 90 Test Cases

Data Output Management: 14 Test Cases

All test cases were rated successful. The achievement of OBJ1 and OBJ5 is demonstrated
by verifying that the auto-generated sequential C-code generated from the Scilab/Xcos
blocks that are listed in the Table 1 and Table 2 is functioning properly in the comprehensive
time-critical use case ARGO EGPWS.

3.1.2.4 Software-in-the-Loop Testing 04 (SIL 04)

The tests are executed using a test harness developed by DLR. The harness executes the
scenarios, compares the EGPWS outputs in these scenarios with the expected ones and
generates test reports.

In accordance with SIL 02, 1061 test cases are executed regarding the requirements of the 5
modes with the following distribution:

Mode 1: Excessive Rate of Descent: 13 Test Cases

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

32

Version: v1.01 / FINAL Public (PU)

Mode 2: Excessive Terrain Closure Rate: 252 Test Cases

Mode 3: Altitude Loss After Take-off: 9 Test Cases

Mode 4: Unsafe Terrain Clearance: 759 Test Cases

Mode 5: Deviation Below Glideslope: 28 Test Cases

As mentioned in SIL 02, when these 1061 test cases are applied to the ARGO EGPWS
Scilab/Xcos model (Model-in-the-Loop testing), currently 770 of them are rated successful.
When the same tests are applied to auto-generated sequential-C code, the failing test cases
are conformant with the ones failing with Xcos EGPWS model. So the Xcos model and the
auto-generated sequential-C code are giving the same outputs in all cases.

It is important to note that the debugging and bug fixing of the Xcos EGPWS model for the
failing cases is in progress.

The achievement of OBJ1 and OBJ5 is demonstrated by verifying that the auto-generated
sequential C-code generated from the Scilab/Xcos blocks that are listed in the Table 1 and
Table 2 is functioning properly in the comprehensive time-critical use case ARGO EGPWS.

3.2 Polarization Image Processing System (Fraunhofer IIS)

3.2.1 Overview of the Test Results

For the unit tests, each of the following modules has been tested separately. In order to keep
the testing simple, a constant matrix or tensor of appropriate dimension has been provided
as input data, which allows for easy testing the numerical correctness of the results

The predefined matrix replacing the real input image data is generated as follows:

polTestPattern = [90, 135;

 45, 0];

F = uint16(repmat(polTestPattern,244,324));

The predefined matrices for the used Gain/Offset Correction are as follows:

polTestPattern = [90, 135;

 45, 0];

GainFrame = double(repmat((polTestPattern./1.0)',240,320));

OffsetFrame = double(repmat((polTestPattern./8192.0)',240,320));

The chosen pattern is easy to analyze for the validation of the outputs from Scilab and
generated sequential and parallel C codes.

Following the principle of least effort, and in order to comply with the original
dimensionalities, the input and output data arrays of the macros of unit tests are replicated to
an array of appropriate dimension, if necessary.

The number of tiles for data parallelization of an array is chosen as 4. The tests are compiled
for the target platform InvasIC emulator. The target contains 3 cores for data processing and
1 core for data communication. The program could still be parallelized.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

33

Version: v1.01 / FINAL Public (PU)

The objective of the unit tests is to verify the functional correctness of the generated C code
(parallel and sequential), while the aspects related to WCET awareness or performance are
not considered in this stage of the project.

For each module, three unit tests have been conducted:

 A test of the original Scilab model (which is actually not a test but provides us with
results considered as functionally correct, i.e., the ground truth). The Scilab model is
executed on a PC platform (Linux or Windows)

 A test of the sequential C code generated by Emmtrix software tools inside the
toolchain. The sequential C code is compiled for and executed on a PC platform

 A test of the parallel C code generated by the ARGO parallelizer. The parallel C code
is compiled for and executed on the InvasIC target platform emulator.

The outputs of the three tests have been compared against each other. If they are identical,
the test is considered as passed, which is the case for all tested modules.

In the following paragraphs, we give the details of the unit tests for each module. In order to
preserve the output arguments aomp and dolp of macros tCDPF_macroname(), the
generated output matrix is either replicated to a size of 640x960 if it is of size 640x480, or
arguments aomp and dolp are increased in size in case of larger output arrays of size
640x480x3 or 640x480x4. (e.g. paInterpolation generates a tensor of dimensions 640x480x4,
which is stacked into the output arguments (aomp & dolp) pairwise.)

Since the dimensionalities in Flow Test matches the original code, there was no need for
such manipulations .

The figures in Section 3.2.2 show the parallelization of units for the Unit Tests and of the
processing pipeline of the whole code for the Flow Test. The parallelization degree can be
seen in the number of different colors used for rectangular nodes. Note that those in the
graph for the Flow in Figure 32 correspond to blocks followed one by another representing
our whole pipeline.

For a better view of the graphs, please refer to the directory structure explanation in the next
section, to find the locations of these graphs. If you take a closer look, you can see black and
red arrows differentiating between tasks with real data dependencies and without any
dependencies, but still scheduled sequentially, because of lack of resources. This might
mean that there is room for more parallelization, but not necessarily. There are tasks that are
connected with an arrow, bearing the description “inactive”. This means that no
communication takes place between tasks, suggesting that these tasks are on the same
core.

3.2.2 Detailed Test Results

a) paROI(): Succeeded
Input data: Constant 648x488 matrix
Output data: Constant 640x480 matrix

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

34

Version: v1.01 / FINAL Public (PU)

Figure 25: Parallelization for paROI unit

b) paGOCorrection():Succeeded

Input data: Constant 640x480 matrix
Output data: Constant 640x480 matrix

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

35

Version: v1.01 / FINAL Public (PU)

Figure 26: Parallelization for paGOCorrection unit

c) paDenoise():Succeeded
Input data: Constant 640x480 matrix
Output data: Constant 640x480 matrix

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

36

Version: v1.01 / FINAL Public (PU)

Figure 27: Parallelization for paDenoise unit

d) paInterpolation():Succeeded

Input data: Constant 640x480 matrix
Output data: Constant 640x1920 matrix

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

37

Version: v1.01 / FINAL Public (PU)

Figure 28: Parallelization for paInterpolation unit

e) paStokes():Succeeded
Input data: Constant 640x1920 matrix
Output data: Constant 640x1440 matrix

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

38

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

39

Version: v1.01 / FINAL Public (PU)

Figure 29: Parallelization for paStokes unit

f) paAomp():Succeeded
Input data: Constant 640x1440 matrix
Output data: Constant 640x480 matrix

Figure 30: Parallelization for paAomp unit

g) paDolp():Succeeded
Input data: Constant 640x1440 matrix
Output data: Constant 640x480 matrix

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

40

Version: v1.01 / FINAL Public (PU)

Figure 31: Parallelization for paDolp unit

h) Flow Test: Succeeded
Input data: Constant 648x488 matrix
Output data: Constant 640x480 matrix

Figure 32: Parallelization for Flow

The log file for each test can be found in the corresponding directory of the test. All the
necessary output files mentioned in Section 2.2.2.1 are generated. To elaborate this further,
we have to look at the structure of this directory:

results.

├───IIS_Flow_Test_predef

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

41

Version: v1.01 / FINAL Public (PU)

│ ├───codegen

│ │ ├───pout

│ │ │ └───obj

│ │ └───reordered

│ │ └───obj

│ ├───eval

│ │ └───build

│ │ ├───parallel

│ │ ├───reordered

│ │ └───sequential

│ ├───htg_output

│ │ ├───dotty_htg

│ │ ├───dot_ssa

│ │ └───dot_ssa_htg

│ ├───paropt

│ │ ├───dots

│ │ ├───dotsol

│ │ └───dot_before_paropt

│ ├───scilab2c

│ │ └───obj

│ └───seq-wcet

│ ├───ais

│ ├───codegen

│ ├───configure

│ ├───dotty_ANNOTATED

│ │ ├───_CDFG

│ │ └───_HTG

│ └───XTC

│ ├───XML_Reports_EM

│ └───XML_Reports_SPM

└───IIS_Unit_Tests_predef

 ├───macroname1

 │ ├───codegen

 │ │ ├───pout

 │ │ │ └───obj

 │ │ └───reordered

 │ │ └───obj

 │ ├───eval

 │ │ └───build

 │ │ ├───parallel

 │ │ ├───reordered

 │ │ └───sequential

 │ ├───htg_output

 │ │ ├───dotty_htg

 │ │ ├───dot_ssa

 │ │ ├───dot_ssa_htg

 │ │ └───IIS_Use_Case_Unit_Tests

 │ ├───paropt

 │ │ ├───dots

 │ │ ├───dotsol

 │ │ └───dot_before_paropt

 │ ├───scilab2c

 │ │ └───obj

 │ └───seq-wcet

 │ ├───ais

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

42

Version: v1.01 / FINAL Public (PU)

 │ ├───codegen

 │ ├───configure

 │ ├───dotty_ANNOTATED

 │ │ ├───_CDFG

 │ │ └───_HTG

 │ ├───IIS_Use_Case_Unit_Tests

 │ └───XTC

 │ ├───XML_Reports_EM

 │ └───XML_Reports_SPM

 ├─── macroname2

Since Flow Test is a standalone project, it does not have subprojects, as in the case of Unit
Tests, which are subdivided to units (macros). Each project folder has generated console log
files in its main directory.

scilab2c directory consists of generated .c and .h files from the first step of Section 2.2.2.1

htg_output directory consists of generated HTG graphs with annotations for IR & SSA, which
correspond to the second step of section 2.2.2.1

seq-wcet folder corresponds to the fourth step of section 2.2.2.1 and consists of HTG graphs
after the Code Transformation step, the sequential C code for core-level code-snippet WCET
estimation and output files of the aiT analysis.

paropt folder corresponds to the fifth and sixth step of Section 2.2.2.1 and consists of HTG
graphs for parallel program and parallel program IR

codegen folder consists of sequential and parallel program C source files.

eval folder has the generated executables and the resulting output values in corresponding
log files for sequential, reordered (again sequential but adapted to toolchain) and parallel (for
InvasIC emulator) programs.

The objectives of the workpackage for this increment can be found in D6.3 Test Case
Phases vs. Measurements [2]. For the IIS use-case, the evaluation of the objectives is as
follows:

OBJ1: It was easy to integrate our Scilab code into the ARGO Toolchain and to retrieve
some initial results.Our phase 2b “Software-in-the-loop” tests are conducted successfully.

OBJ2: Objective 2 is partially achieved for this increment. The second part of this objective
will be considered in iteration 2 of this document.

For the first part of the objective, we can also divide our evaluation into two.

The initial assessment for the development time can be found in D6.2 Test Cases and
Requirements Specification [3]. This assessment suggests a development time reduction
from 8 months to approximately 2.5 months. Until now, we have effectively invested about 7
weeks for the integration of our code into the ARGO Toolchain. The waiting periods for
required licenses and other delays caused by administrative issues and other projects are
discarded by that assessment.

Compared to our initial assessment this value might look much less, but please note that the
Xcos part of the phase 2a “Model-in-the-loop” should be added to this time afterwards, which
is planned for the second increment of this document, because of the unsuitability to the IIS
use-case.

OBJ5: Here again, we will discard the phase 2a “Model-in-the-loop” and phase 3 “Hardware-
in-the-loop” parts of the objective and stage them to the second increment of this document.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

43

Version: v1.01 / FINAL Public (PU)

Apart from those, our Unit Tests and Flow Test representing our whole pipeline have
successfully run on the InvasIC platform emulator.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

44

Version: v1.01 / FINAL Public (PU)

4. Conclusion and Future Work

4.1 Evaluation Summary

In this first increment we successfully conducted an evaluation of the ARGO Toolchain. It
was concluded with successful code generation and extensive Software-in-the-loop testing
(more than 1000 test cases).

Regarding the presented use cases, the number of tasks currently included is limited and the
consortium is to extend it within the development framework of the ARGO Toolchain. The
developed evaluation infrastructure will be readily available for further development of the
ARGO Toolchain and further expanded and enhanced for the second increment where
Hardware-in-the-loop testing and further evaluation will be performed.

4.2 Future Work

4.2.1 Enhanced Ground Proximity Warning System

The next step for the DLR use-case is to develop a better way to reintroduce sequential and
parallel C-code into Scilab/Xcos schemas for a streamlined test flow for SIL 04 and SIL 05.
Next, the tests will be integrated to the ARGO CI in order to check the ARGO Toolchain in an
automated manner. While it is still too early to really evaluate the user experience, the
preliminary results show that the toolchain can be (easily) integrated and generates correct
code.

Afterwards, WCET constraints will be considered and user intervention scenarios in
parallelization will be exercised.

4.2.2 Polarization Image Processing System

The next step for the IIS use-case is to include a TCP/IP interface and eventually the whole
flow to the toolchain environment and complete the tests for it. Afterwards, WCET constraints
will be considered. Furthermore, the model is planned to be specified in XCOS instead
textual Scilab code and will be extended by at least one more computation intensive
processing step.

D6.4 Test Case Demonstration and Evaluation Report – Increment 1 ARGO

45

Version: v1.01 / FINAL Public (PU)

5. References

[1] IEEE Standard for Software and System Test Documentation," in IEEE Std 829-2008 ,
vol., no., pp.1-150, July 18 2008 doi: 10.1109/IEEESTD.2008.4578383

[2] ARGO Deliverable D6.3 Test cases and Design and Implementation, the ARGO
Consortium, Umut Durak (DLR), David Mueller (DLR), Koray Kasnakli, Dr. Imen Fassi, Dr.
Isabelle Puaut, Dr. Panayiotis Alefragis, Dr. Marcus Bednara, Version 1.05, March 2017.

[3] ARGO Deliverable D6.2 Test Cases and Requirements Specification, the ARGO
Consortium, Umut Durak (DLR), David Mueller (DLR), Marcus Bednara (Fraunhofer IIS),
Version 1.00, June 2016.

[4] Jürgen Gotschlich, Torsten Gerlach and Umut Durak. 2014. 2Simulate: A distributed real-
time simulation framework, ASIM STS/GMMS Workshop, Reutlingen, Germany.

[5] ARGO Deliverable D5.1 Interface Specification, the ARGO Consortium, George Goulas,
Panayiotis Alefragkis (TWG), Steven Derrien, Isabelle Puaut (UR), Simon Reder, Harald
Bucher (KIT), Reinhold Heckmann (Absint), Version 1.00, June 2016.

[6] ARGO Deliverable D3.2 Algorithms for cross layer programming, the ARGO Consortium,
Panayiotis Alefragkis (TWG), TWG, KIT, Scilab, UR1, Version 0.07, July 2017.

[7] emmtrix Code Generator Reference Guide, emmtrix Technologies GmbH, April 2017

