ARGO

WCET-Aware Parallelization of Model-Based Applications
for Heterogeneous Parallel Systems

H2020-ICT-2015
Project Number: 688131

ARGO

Deliverable D6.4

D6.4 Test Case Demonstration and Evaluation Report (First
Increment)

Editors: Dr. Umut Durak

Authors: Dr. Umut Durak, David Mueller, Koray Kasnakli, Dr.
Marcus Bednara

Version: 2

Status: FINAL

Dissemination level: Public (PU)

Filename: D6.4 test case demo_and eval 11 _1.02.docx
ARGO Consortium

Karlsruhe Institute of Technology DE

Scilab Enterprises FR

Recore Systems B.V. NL

Université de Rennes | FR

Technological Educational Institute of Western Greece GR

AbslInt Angewandte Informatik GmbH DE

Deutsches Zentrum flr Luft- und Raumfahrt DE

Fraunhofer IIS DE

emmtrix Technologies GmbH DE

© Copyright by the ARGO Consortium

D6.4 Test Case Demonstration and Evaluation Report — Increment 1

ARGO

Document revision history

Version Based Date Comments / Changes
on

1v0 04.08.2017 U. Durak, D. Mueller, | Final Version
K. Kasnakli

1v01 1v0 19.10.2017 U. Durak, D. Mueller | Final version, proofread for

consistency

1v02 1v01 26.10.2017 M. Bednara, K. | Final version, proofread for

Kasnakli consistency

Version: v1.01 / FINAL

Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

Table of Contents

Document revision hiStory.........ccciiii e ———— 2
LI 1] (=3 o3 0o T =1 | =N 3
LiSt Of FIQUIES..... . sssr e e e s s s s s s sms e e e e s s s mmn e e e e e e s e mmn e e e e e e e s n s nmnnnnen 4
= o N I o == 5
GlOSSAry Of TEIMS......ciiiiiiii i an e an e e ann e 6
1. INErOAUCHION .. ————————— 7
P R U [o To 1T RO 7
L2 © V= TP 7
2. Demonstration and Evaluation Specification............cccccrrriiicciici s 8
2.1 Enhanced Ground Proximity Warning System (DLR)..........cccooiiiiiieiiiiiiiiiiieeeeee, 8
211 OVBIVIEW....... et ettt e e e e ettt e e e e e e e e et ee e e e eeeeessasatbaneeeeaeseannsssaaneaaaeens 8
2.1.2 Code GENEIAtIONeiiiiiei ittt 9
2.1.3 Software-in-the-Loop TeStiNg......c.cooiiiiiii e 13

2.2 Polarization Image Processing System (Fraunhofer l1S)...........cccooieiiiieniniienn. 20
221 Testing SPecCifiCatioNScoouiiiiii e 20
222 Overview of the Intermediate StepPS.......cccccoiiiiiiiii e, 21

3. Demonstration and Evaluation ResuUltsc.ccccvmiiniiinnnn s 25
3.1 Enhanced Ground Proximity Warning System (DLR)..........ccccciiiiiiiinniiiiiieeeee 25
3.11 COdE GENEIAtIONceiiiiieeei e e e 25
3.1.2 Software-in-the-Loop TeStiNg........coocuiiiiiiiiee e 29

3.2 Polarization Image Processing System (Fraunhofer IIS)..........ccccooviiiiiinnnns 32
3.21 Overview of the Test ReSUILScoiiiiiiiii e 32
3.2.2 Detailed TESt RESUILSuviiiiiiie e 33

4. Conclusion and FUtUre WOrKcccoiiriiiiccismmrrrrrnsssssssmmeesse s sssssssssssssssssssssssssmmsssnseeas 44
4.1 Evaluation SUMIMAIYcoiiiiiiiiii ettt 44
4.2 FUTUIE WOTK ...t e e e e e e e e s 44
421 Enhanced Ground Proximity Warning Systemccccveiiiiiiiie e 44
422 Polarization Image Processing Systemccooiiiiiiiiiiii e 44

5. ReferencCes.......iiiiniic i —————— 45

3

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

List of Figures

Figure 1: The test and evaluation workflow for the ARGO EGPWSccoociiiiiiiieciieen 8
Figure 2: ARGO EGPWS Design COmMPOSItIONccoiiiiiiiiiiiieee e 9
Figure 3: Scilab Script Generation from Xcos modelsccoocciiiiieii i, 10
Figure 4: ARGO TOOICNAIN.....cciiiiiiii it 12
Figure 5: Compiler SCrIPS ...ooiii et e e e e s e e e e e e e e neneeees 12
Figure 6: Open-loop Unit TESHING.....ccoii i 14
Figure 7: Test Vectors CoNSIrUCHONc.uuiiiiiii e e 14
Figure 8: Test INPUL SEIECHONcooiiiiie s 15
Figure 9: Pass/Fail Criteriauviiiiiii et a e e 15
Figure 10: ARGO EGPWS Close-loop Test Modelcooooeiiiiiiiiiiiiiiicceceeee e, 16
Figure 11: Close-l0op Scenario TESHNGueeiiiiiiiiieiiiie e 16
Figure 12: Test Vectors CONSIIUCTIONoouuiiiiiiiiiei e 16
Figure 13: SIL 02 ARGO EGPWS Scilab Function Block ..., 17
Figure 14: Sample Excerpt from SCENAIiO........ccoviiiiiiiciiiiiii e 17
Figure 15: Pass/Fail Criteriacoiiiiiiiiieie e 17
Figure 16: Pass/Fail Crteriaeeeiiiiiiiiiieiiee e e 18
Figure 17: SIL 04 ARGO EQPWS and Scilab/Xcos Integration...........c.ccccceeviiieeiiiiieeeeeee, 19
Figure 18: SIL 04 Pass/Sail Criteria...........ououiiiiiiiiiie e 20
Figure 19: ARGO Toolchain Project Structure ..., 27
Figure 20: ARGO GPWS Code EXCErPL......uuiiiiiiiiiieeciiee et 27
Figure 21: HTG Excerpt from Optimized Parallel ARGO GPWS Code.........cccovveveeeeeeinnnneen. 28
Figure 22: Sample SIL 01 TeSt REPOItuiiiiiiieeee e e 29
Figure 23: An Excerpt from a Sample SIL 02 Test Report........cccoooeieiiiieieeeeeee e 30
Figure 24: Sample SIL 03 TeSt REPOIt.......cueiiie e 31
Figure 25: Parallelization for paROI UNit...........cooiiiiiiii e 34
Figure 26: Parallelization for paGOCorrection Unit.............cooiiieeiiiiiere e 35
Figure 27: Parallelization for paDenoise UNit............c.oooiiiiiiiiiiie e 36
Figure 28: Parallelization for palnterpolation unit.............cccoo i, 37
Figure 29: Parallelization for paStokes Unitcooiiiiiiiiii e 39
Figure 30: Parallelization for paAOmMP UNIt..........cccuiiiiiiie e 39
Figure 31: Parallelization for paDolp UNit............oocuiiioii e 40
Figure 32: Parallelization fOr FIOWccooiiiiiiii e 40
4

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

List of Tables
Table 1: Support Scilab /Xcos Block Utilization in ARGO EGPWSoovvviiiiiiiiiiiieiiiiiinnn, 25
Table 2: Newly Added Blocks to the Supported Listcccccuiiiiiiie e, 26

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1

ARGO

Glossary of Terms

API

CG

Cl

EGPWS

HIL

HTG

SSA

SIL

WCET

Application Programming Interface

Code Generation

Continuous Integration

Enhanced Ground Proximity Warning System
Hardware-in-the-Loop

Intermediate Representation

Hierarchical Task Graph

Static Single Assignment
Software-in-the-Loop

Worst Case Execution Time

Version: v1.01 / FINAL

Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

1. Introduction

1.1 Purpose

This document reports the test and evaluation of the ARGO Toolchain using both of our test
cases (Enhanced Ground Proximity Warning System and Polarization Image Processing
System) as specified in Deliverable D6.2 “Test Cases and Requirements Specification”. We
will specify the demonstration and evaluation phases in detail and report the results of
demonstration and evaluation efforts.

This documentation of the demonstration and evaluation is based on the IEEE Standard for
Software and Systems Test Documentation (IEEE Std 829-2008) [1] which provides clear
guidelines for documenting test, demonstration and evaluation efforts. Since this IEEE
standard was developed for a wide range of software systems, not all parts of the standard
are convenient for our specific case. Therefore, we used the standard to tailor and design the
outline of this report.

1.2 Overview

This document is organized as follows: in Section 2 we give the specification of
demonstrations and evaluations based on the “Test Design and Phases” that were previously
described in ARGO Deliverable D6.3 Test cases and Design and Implementation [2]. In
Section 3 we report the results of each demonstration and evaluation specified. Section 4
provides an outlook over the next steps planned in both test cases and Section 5 provides a
list of references.

The overview of the evaluation could be reported as positive. As of the first increment, where
we are standing at the middle of the project schedule, there exists an integrated toolchain
that is provided in a Linux container (as a Docker image). While there are various remarks
resulting from the evaluation that will be introduced in the body of the report, as of the date
the report is written, it is possible to go from a Scilab/Xcos diagram (or Scilab scripts) to
parallel code. Along with that, an extensive evaluation infrastructure has been developed
with a large number of real life industry scale test cases and demonstrations. This
infrastructure is expected to guide the project until the end with end user requirements.

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

2. Demonstration and Evaluation Specification

2.1 Enhanced Ground Proximity Warning System (DLR)

2.1.1 Overview

The requirements of ARGO EGPWS are documented in D6.2 Test Cases and Requirements
Specification [3]. The test and evaluation workflow with ARGO EGPWS is depicted in Figure
1.

Scilab [%<iVAN | Sequential

Code

SIL 01, SIL02 SIL 03, SIL04, HIL 01 SIL 05, HIL 02, HIL 03

Figure 1: The test and evaluation workflow for the ARGO EGPWS

The description of the items in Figure 1 can be given as follows:

Code Generation (CG) is the generation of target deployable code using the ARGO
Toolchain. The code generation is tested and evaluated in three steps using the ARGO
Toolchain as follows:

CG 01: Scilab script generation from Xcos models.
CG 02: Sequential C code generation from Scilab script.
CG 03: Parallel C code generation from sequential C code.

Software-in-the-Loop Testing (SIL) is the testing of generated code. It is essentially non
real-time and targets at functional verification. SIL testing is being done repetitively,
corresponding to the steps of code development as listed below:

SIL 01: Open-loop tests are executed for Scilab scripts generated from Xcos model
elements in order to verify that the outcomes of script execution are complying with
those of the Xcos model elements.

SIL 02: Closed-loop tests are executed for Scilab scripts generated from the overall
Xcos model in order to verify that the outcomes of script execution are complying with
those of the overall Xcos model.

SIL 03: Open-loop tests are executed for sequential C code generated from the
Scilab scripts that correspond to Xcos model elements in order to verify that the
outcomes of sequential C code execution are complying with the Scilab scripts for
Xcos model elements.

SIL 04: Closed-loop tests are executed for sequential C code generated from the
Scilab scripts of the overall Xcos model elements in order to verify that the outcomes
of sequential C code execution are complying with the Scilab scripts for the overall
Xcos model.

SIL 05: Closed-loop tests are executed for generated parallel C code of the overall
Xcos model in order to verify that the outcomes of parallel C code execution are
complying with the sequential C code for the overall Xcos model. This task is planned
for increment 2 using both the RECORE FlexaWare SDE and InvasIC API.

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

Hardware-in-the-Loop Testing (HIL) is the testing of generated C code on a target platform
essentially in a real-time setting. It enables the verification of non-functional requirements.
This task is planned for increment 2 and will be done in the following three steps:
HIL 01: closed loop tests will be executed for generated sequential C code on a
single core target. The plant model is executed on an x86 PC running on a real-time
operating system.
HIL 02: closed loop tests will be executed for generated parallel C code on the ARGO
RECORE platform. The plant model is executed on an x86 PC running on a real-time
operating system.
HIL 03: Piloted test runs will be executed with the generated parallel C code on the
ARGO RECORE platform integrated into DLR’s AVES.

2.1.2Code Generation

Code Generation (CG) is the generation of target deployable code using the ARGO
Toolchain as described in the following subsections.

2. S R _warning

R

T;‘ 1 ADIRS1 ISE_Warning
ADIRST

MODE1 EvcessiTf Rale of Descert WU

o] RM M
warnin
L |y aorst — 1| H g
» LoCUT fh_warning — n
.__ {6 ‘AUDIO_SUPPRESS A
FLaP_pEFLECTION i HLDGRLAR m AT AUDIO_BUPPRESS
¥ coNFiG -
= 7 w— INHIBIT_ALLAUDIOT
>—>(LDGFLAP3 A conre H W INHBIT_t aUDIOT FO_TERRAIN_DISPLAY
cPns LorLars MODE 2. Excessiveryerrain Closure Rate 5 WHEIT_ALLAUDIOR
L, R W e INHBIT_ktf AUDIO2
L) nowest - 9w INHIBIT_MODES1T0S Y
— warnin
- —tvarmng INHIBIT_MEOES1TOS CAPT TERRAMN DISFLAY Trash
4. n 0 /10— | INHIBIT_TADANDTCF
Leen 5 » LGCUT INHIBIT_TABANDTCF
" 700E 3 Ahud Upes Alir Takeoti 11—l GSHIODE_NET
oA GSMODE INHIEIT p—
! »{Rat [TCa_warning 2 FLAPHODE i kil aerT)
LT o) aoren I FLAPMODE HET AURAL_ALERT
- LGCIL b_warring b ERD_INARNINGS
W LDGFLAP phr—figps_warning
ETCR_WARNINGS RVl FAULT b
b CONFIG Cc_warning TERRGRINS FALLT

. - * ALAT_WARNING
MODE 4 UnsafEE\ rain Clearance MUx

UTC_WARNINGS

L R _warning saY p——»F
DEG_WARNINGS

{3'» » ILS1 se_warning

=3}

IMODE 5: Deviatior] Below Gmes\ope I

faw » Trash

TEST

Figure 2: ARGO EGPWS Design Composition

;0] TERR_WARNINGS

VISUAL_aLERT p——
FO_TERRAIN_DISPLAY VISUAEZALERT

??1

CAPT_TERRAIN_DISPLAY i
- e
T Data Output Managemert

21.21 Code Generation 01 (CG 01)

Identification: CG 01 Scilab script generation from Xcos models.

Purpose: The purpose of GC 01 is to test the Scilab script generation feature of the ARGO
Toolchain. The functionality assigned to the Scilab/Xcos Front-End is the translation of input
Xcos models to Scilab scripts. GC 01 addresses the objectives OBJ1, OBJ2 and OBJ5 as
follows:

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

OBJ1: The availability of the ARGO Toolchain will be demonstrated by generating Scilab
scripts for supported Xcos block set as described in document D 3.1 Intermediate
Representation and Sequential Code Generation.

OBJ2: Subjective assessment will be provided about the comparison of Scilab/Xcos Front-
End and MATLAB/Simulink.

OBJ5: The code generation will be executed for the comprehensive time-critical use case
ARGO EGPWS

Approach: The overall ARGO EGPWS model and individual model elements that are
subject to code generation are depicted in Figure 2. In this step Scilab scripts will be
generated for single Xcos model elements. This is currently carried out by the Scilab/Xcos
Front-End (Figure 3).

£E “83206PWS (Dydura_urmiDLRYARGONsvn_DLRVEGPWSdewtSeilab 5.5.2443206PWS zc0s) - Xeos [E=nE=R =)
Datei Bearbeiten Ansicht Simulation Format ?

CE | = B ‘ = | = | ‘ = Code-Generierung

Code Generator to Scilab

Code Generatar to C (Emmitriz)

e
DUIMY
cLss
% [0;0,0,740,-20.3,77.2] ADIRS1
- |

502 1 RA1

[2.256-4,0,0] LS AURAL_ALERT »

[0 p——mioou

(E—.l FLAP_DEFLECTION

@—D: AUDIO_SUPPR
@—h: INHIBIT_ALLAL

WINHIB\T_ALLAUD\Oz

(I}—h: INHIBIT_MODES1T05

(D—.i INHIBIT_TADANDTCF

[l |
@—’; FLAPMODE _INHIBIT

(I}—v: GPWS_LDGFLAPS

TER i T

102 \ FLTPHASE

ARGO GPWS

Figure 3: Scilab Script Generation from Xcos models

The Pass/Fail Criteria of this step is the generation of Scilab scripts without any error. We
expect to a folder with the name generated, containing two Scilab files, namely
ARGO_GPWS.sci and ARGO_GPWS_scenario.sce. The plausibility test is conducted by
running the ARGO_GPWS_scenario.sce which executes the ARGO_GPWS.sci with random
inputs. One successful execution is enough to claim the success of this step.

The following steps were followed to prepare the setup for the test case:

10
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

e Scilab 5.5.2 was installed.
e Xcos Code Generator was installed in Scilab using atomsinstall.

2.1.2.2 Code Generation 02 (CG 02)

Identification: CG 02 Sequential C-code generation from Scilab script.

Purpose: The purpose of GC 02 is to test the sequential C-code generation feature of the
ARGO Toolchain. The functionality assigned to the ARGO Toolchain is transforming input
Scilab script to sequential C-code. GC 02 addresses the objectives OBJ1, OBJ2 and OBJ5
as follows:

OBJ1: The availability of the ARGO Toolchain will be demonstrated by conducting sequential
C-code generation for the supported Xcos block set described in document D3.1
Intermediate Representation and Sequential Code Generation.

OBJ2: Subjective assessment will be provided about the comparison of the ARGO Toolchain
and MATLAB/Simulink.

OBJ5: The code generation will be executed for the comprehensive time-critical use case
ARGO EGPWS.

Approach: The below Scilab scripts are subject to code generation:
Overall ARGO EGPWS:

ARGO_GPWS scenario.sce

ARGO_GPWS.sci

Mode 1: Excessive Rate of Descent:

MODE 1 _Excessive _Rate of Descent_scenario.sce
MODE 1 _Excessive Rate of Descent.sci

Mode 2: Excessive Terrain Closure Rate:
MODE_2 Excessive_Terrain_Closure_Rate_scenario.sce
MODE 2 Excessive Terrain_Closure Rate.sci
Mode 3: Altitude Loss After Take-off:

MODE_3 Altitude_Loss_After_Takeoff_scenario.sce
MODE 3 Altitude_Loss After Takeoff.sci

Mode 4: Unsafe Terrain Clearance:
MODE 4 Unsafe_Terrain_Clearance_scenario.sce
MODE 4 Unsafe Terrain_Clearance.sci

Mode 5: Deviation Below Glideslope:

MODE 5 Deviation_Below_Glideslope_scenario.sce
MODE_5 Deviation_Below_Glideslope.sci

Data Output Management:

Data Output_Management_scenario.sce

Data Output_Management.sci

1"
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1

ARGO

File Edit Source Refactor Navigate Search Project Run Window Help

o~ ¥-O~A~ FG- O ® il v G- (3
% Package Explorer 5 = = = o | Bflow call.cs [argo-egpws-project.cs 51 = O E TaskList = = o
- & egpws ey ~EE e xpB9
* & fbraries s #projectiame = "DLR Use Case Flow'; -
~ (= results #sourceFile - "src/Scilab/ARGO_GPWS_scenarie.sce”; v All » Activate.. @
= DLR_Use_Case_Flow_docker stars_sten = 23
» & htg_output
- # Possible values for start step are:
» i paropt & 1: xcos
- & scilab2c 1§ It aeub
[ARGO_GPWS_scenario.gen.c
ARGO_GPWS_scenario.gen.c.map 1 ADL="/home/developer/argo- tools/ADL/ADL_InvasIC_v3.xml";
B ARGO_GPWS_scenarlo.gen.d 1788 mn?’m to get the arge tool flow path? Using 10C or something?
£ ARGO_GPWS_scenario.gen.h ali(/argo-tools/argo- flow/arge-tool-Flow. cs
ARGO_GPWS_scenario.gen.h.map projectiane,
ARGO_GPWS_scenario.gen.html start_step, ®© Connect Mylyn
2 ARGO_GPWS.c Connect to your task and ALM
ARGO_GPWS.c.map tools or create a local task
& ARGO_GPWS.h & Outline x - o @
ARGO_GPWS.h.map .
- . An outline is not available.
4 emx_codegen_intern.h
£ emx_codegen_rand.c
4 emx_codegen_rand.h
¢ emx_codegen h
Makefile.gen
» & seq-weet
- @ sre
=] s
e Scilab
B ARGO_GPWS_scenario.sce
B ARGO_GPWS sci
b & tests
= workspace
B A320EGPWS. zcos
B A320GPWS_Init.sce
B AS20GPWS_scifunc.zcos i#1 Problems @ Javadoc [Declaration | © Console &2 X% AapBHEE m0-8~ -0

B A320GPWS.zcos <terminated> Gecos Script flow call.cs [Eclipse

& argo-egpws-project.cs THeLiL AT NS URGLI] UCOUG 4 Lo d. sl T UTUUS LT aL LU YLEYaLY
argo-egpws-project.cs.glog 1

[flow_call.cs

flow_call.cs.glog

.a.p
ap
ap

14:11:19.647 [wain] DEBUG

.1, HTGHodelFactoryLegacy
14:11:19.647 [main] DEBUG

argo-egpws-project.cs - egpws

Figure 4: ARGO Toolchain

.m.i.HTGModelFactorylegacy -
m.1.HTGModelFactorylegacy -
m. 1. HTGModelFactoryLegacy -

.1.HTGHodelFactorylegacy -

(ui 11, 2017, 2:09:40 PM)
ProfInfo Task:ARGO GPWS HT1941 LT1937

ProfInfo Task:ARGO GPWS_HT1613

ProfInfo Task:ARGO_GPWS_HTS31

ProfInfo Task:ARGO_GPWS_HT1912

ProfInfo Task:ARGO_GPWS_HT79_SI78&

Sequential C code generation is carried out using the ARGO Toolchain (Figure 4). Compiler
scripts are utilized for the automation of the process. Figure 5 presents two compiler scripts,
flow_call.cs and argo-egpws-project.cs that set the project parameters and call the argo-tool-
flow.cs for the code generation. argo-tool-flow.cs can execute the whole process from Xcos
model to parallel code. Here within this test we start with step 2 (Scilab script) and only
consider the outputs that are created for sequential code generation.

flow_call.cs 2 argo-egpws-project.cs

1
2projectName = "DLR Use Case Flow";
3prijpath = projectName;

[ARGO_GPWS.c

4 sourceFile = "src/Scilab/ARGO GPWS scenarie.sce";
5

6call("argo-egpws-project.cs",

7 pripath,

8 sourceFile

9

)i

[3 flow_call.cs argo-egpws-project.cs 52
lprojectName = s1;

2 sourceFile = $2;

s#projectName = "DLR_Use_Case_Flow";

5#sourceFile = "src/Scilab/ARGO_GPWS scenario.sce”;
6

7start_step = 2;

8

9# Possible values for start step are:

lo# 1: xcos
11# 2: scilab
12# 3: C

13
14 ADL="/home/developer/argo-tools/ADL/ADL InvasIC v3.xml";

15
16 debug(1);
17 ## TODO: How to get the argo tool flow path? Using I0C o1

18 call("../argo-tools/arge-flow/argo-tool-flow.cs",
19 projectName,

20 sourceFile,

21 start_step,

22 ADL);

Figure 5: Compiler Scripts

The Pass/Fail Criteria of this step is the generation of sequential C code that compiles

without any error.

12
Version: v1.01 / FINAL

Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

2.1.2.3 Code Generation 03 (CG 03)

Identification: CG 03 Parallel C-code generation from sequential C-code.

Purpose: The purpose of GC 03 is to test the parallel C-code generation feature of ARGO
Toolchain. The functionality assigned to the ARGO Toolchain is transforming input sequential
C-code to parallel C-code. GC 03 addresses the objectives OBJ1, OBJ2 and OBJ5 as
follows:

OBJ1: The availability of the ARGO toolchain will be demonstrated by conducting parallel C
code generation for the supported Xcos block set described in document D 3.1 Intermediate
Representation and Sequential Code Generation.

OBJ2: Subjective assessment will be provided about the comparison of the ARGO Toolchain
and MATLAB/Simulink.

OBJ5: The code generation will be executed for the comprehensive time-critical use case
ARGO EGPWS.

Approach: The below Scilab scripts are subject to code generation:
Overall ARGO EGPWS:

ARGO_GPWS scenario.h

ARGO_GPWS scenario.c

ARGO_GPWS.h

ARGO_GPWS.c

The sequential C-code generation is carried out using the ARGO Toolchain (Figure 3).
Compiler scripts are utilized for the automation of the process. We used the compiler scripts
from CG 02 that are presented in Figure 5, namely flow_call.cs and argo-egpws-project.cs.
They set the project parameters and call the argo-tool-flow.cs for the code generation. argo-
tool-flow.cs is meant to execute the whole process from Xcos model to parallel code. Here
within this test we start with step 3 (Sequential C-Code) and check the outputs that will be
created for the parallel C-code.

The Pass/Fail Criteria of this step is the generation of parallel C code that compiles without
any error.

2.1.3 Software-in-the-Loop Testing

Software-in-the-Loop Testing (SIL) is executing the generated code by putting it in a test
loop. It is essentially non real-time and targets functional verification. SIL testing is being
done repetitively, corresponding to the steps of code development as listed below:

2.1.3.1 Software-in-the-Loop Testing 01 (SIL 01)

Identification: SIL 01 Open-loop testing for Scilab scripts generated from Xcos model
elements

Purpose:

Unit tests are executed for Scilab scripts generated from Xcos model elements in order to
verify that the outputs of the scripts are complying with those of the Xcos model elements.
SIL 01 addresses the objectives OBJ1 and OBJ5 as follows:

13
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

OBJ1: The functionality of the ARGO Toolchain will be demonstrated by conducting
Software-in-the-loop tests on the Scilab scripts that it generates. SIL 01 will verify the correct
code generation for Scilab Scripts within the ARGO Toolchain.

OBJ5: This test case demonstrates the industry standard testing approaches with the ARGO
Toolchain for the comprehensive time-critical use case ARGO EGPWS.

Approach: The below Scilab scripts are subject to testing:
Mode 1: Excessive Rate of Descent:

MODE 1 _Excessive Rate of Descent.sci
Mode 2: Excessive Terrain Closure Rate:
MODE 2 Excessive Terrain_Closure Rate.sci
Mode 3: Altitude Loss After Take-off:

MODE 3 Altitude Loss After Takeoff.sci
Mode 4: Unsafe Terrain Clearance:
MODE 4 Unsafe Terrain_Clearance.sci

Mode 5: Deviation Below Glideslope:
MODE_5 Deviation_Below_Glideslope.sci
Data Output Management:

Data Output_Management.sci

—
——d

FA R R s
1 Execute :
1 Model | 1
. Unit Serip)
TESTVECTOR 1" C.Cade '}
Y !
.l o==FEFFEEEI= ==:l J.
: o COMPARE 1 ;
1 1
LY

__________ 4

2450 1

2000 1

1500 1

@ "SINK RATE"
@ "PULL UP"

1000

RADIO ALTITUDE (FT)

500 1
10

1 2 3 & 5 6 7
SINK RATE (FT/MIN X 1000)(INERTIAL VERTICAL SPEED)

Figure 6: Open-loop Unit Testing Figure 7: Test Vectors Construction

The approach used in SIL 01 can be presented as open-loop unit testing in a black-box
fashion (Figure 6). The test vectors and expected outputs are constructed using the
requirements specifications (Figure 7). The interfaces of the components of the ARGO
EGPWS model are executed extensively regarding the range coverage (Figure 8).

14
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

£ as0f Model Script

w 2000+ \

. TEST VECTOR 1 N

5 15004 e

[

o 10004

g ki
s00 SRR TEShtasmS
1t TESTVECTOR Y PASSED g PASSED

12 3 4 5 6 7
SINK RATE (FT/MIN X 1000)(INERTIAL VERTICAL SPEED)

Figure 8: Test Input Selection Figure 9: Pass/Fail Criteria

The Pass/Fail Criteria of this step is the conformance of the script outputs with the expected
outputs which are aligned with the source Scilab/Xcos model output (Figure 9).

2.1.3.2 Software-in-the-Loop Testing 02 (SIL 02)

Identification: SIL 02 Closed-loop testing for Scilab scripts generated from the overall
ARGO EGPWS Scilab/Xcos model.

Purpose:

Scenario tests are executed for Scilab scripts generated from the overall ARGO EGPWS
Scilab/Xcos model in order to verify that the outputs of the scripts are complying with those of
the Xcos model. SIL 02 addresses the objectives OBJ1 and OBJ5 as follows:

OBJ1: The functionality of the ARGO Toolchain will be demonstrated by conducting
Software-in-the-loop tests on the Scilab scripts that it generates. SIL 02 will verify the correct
code generation for Scilab scripts within the ARGO Toolchain.

OBJ5: This test case demonstrates the industry standard testing approaches with ARGO
Toolchain for the comprehensive time-critical use case ARGO EGPWS.

15
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

1)

_TERRAIN_DISPLA’
Pich CMD [-] CAPT Y Trash

i
g

FLAP. N
Fol CMD (-] 2

AUDIO_SUPPRESS
zetaCD Control_inputs Aircraft_Outputs: Extractor
HIBT_ALLAUDIOT
Yaw CMD [-]

\ J HIBT_ALLAUDIOZ

ENG1CHMD s INHIBIT_MODES1T05

TLAENG 1
INHIBIT_TADANDTCF
STBY
» _INHBIT

ENG2CHD

P FLAPMODE_INHBIT
TLAENG 2
p—————» TEST
VISUAL_ALERT VISUAL_ALERT [128]

P FO_TERRSELECTION

_FAULT Trash

!

!

=
&

P—————————— CAPT_TERRSELECTION
%

\ y
N L
DEMUX ARGO EGPWS

Figure 10: ARGO EGPWS Close-loop Test Model

Approach: This is the Scilab script that is subject to testing:
ARGO_GPWS.sci

o SCENARIO DATA

P R B s RAL Vs AT ION AT TAS FLAP 16
1 Execute ! 150 | w00 | 52N O09E | 2000 180 2 DN

1
i
E : Input variables expected Oulput
' — CONFIG: Not necessary to perform with different CONFIGS

1 [m]

1 10ft- 2450 BLW Envelope |
1 0O o
1 ABV Envelope no warning o warning warning

Within Envelope 1 |0 wernin

Scenario

1 Within Envelope 2

o o o o
[m}
El

o o oo

u}

BLW Enveloy

Figure 11: Close-loop Scenario Testing Figure 12: Test Vectors Construction

The approach used in SIL 02 can be presented as closed-loop scenario testing in a black-
box fashion (Figure 11). Closed-loop testing reintegrates the generated script/code back into
the Xcos schema and executes the test scenario with a plant and the system under test
(SUT) together (Figure 10). The plant in the SIL 02 case is the aircraft (Airbus A320) and the
SUT is the ARGO EGPWS. A Scilab Function Block (scifunc_block_m) of Xcos is utilized to
integrate the auto generated Scilab script back into the model schema (Figure 13).

16
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

m
R - ..
A':Gm AURALZALERT
Gttt
LS
chm TERRG%}AULT
[

FLAP DEFLECTION /=~ STaY
=\ AUDIO_SHPPRESS P
WHEIT_ALADOT o VISUAL-ALERT

(3. MHEIT_ At AUDIO2 P>
NHBT_MOBESITOS
{7y MHEIT_TADANDTCE .,
GSMODE INHBIT
- 42
/2 FLAPMOBE_INHISIT Function; b
= v [¥1,y2,y3,y4 y5,¥8,77 yB.y8,y10,y11,y12,y13,y1 4|=ARGO_GPWS(t,ul u2,u3,u4 uS,U8 U7 UB,u8 u10,u1 1 U12,u1 3,ul U151 B,u17,18,1119,20,u21 122 u23,u24,u25)
e
e TEST [
e »
FLTPHASE M ekt
M2 Hyst 4 detD r
M2 Hyst - inith
W2 stopratch
Myt 2 D M
—
>
/
v My
JT -.

Figure 13: SIL 02 ARGO EGPWS Scilab Function Block

The scenarios that contain the initial state and the course of events during the test execution
are applied to the test model; the model outputs are compared to the expected outputs and
the results are reported. An excerpt from a sample scenario is given in Figure 14. Scenarios
are constructed using the requirement specifications in order to cover the 5 modes of the
ARGO EGPWS (Figure 15). The inputs are classified regarding the decision trees of each
mode. All possible output values of modes are addressed by the designed scenarios.

sécnurio. ; histat pos ‘ 4 : ‘dcglra;d: East i Model Script
scenario. ! Y ; = 52*deg2rad,; A f
scenario. " ! = “f2m;
scenario. . ; .phi =0; SCENARIO 1 W (ASSED
scenario. : . . = : rad -
S - : S = e SCENARIO 2 | PASSED "} FAILED
scenario. = 0*deg2rad;
scenario. = O*deg2rad; SCENARIO 3 FAILED FAILED
scenario. = (*deg2rad;

SCENARIO A PASSED
scenario. =
seenario. - _ _
scenario. = _—
Figure 14: Sample Excerpt from Scenario Figure 15: Pass/Fail Criteria

The Pass/Fail Criteria of this step is the conformance of the script outputs with outputs of the
source Scilab/Xcos model. As presented in Figure 15, if the source Scilab/Xcos model is
passing the test in a particular scenario, we are expecting the script to also pass.

2.1.3.3 Software-in-the-Loop Testing 03 (SIL 03)

Identification: SIL 03 Open-loop testing for sequential C-code generated from Scilab scripts
for Xcos model elements

Purpose:

17
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

Unit tests are executed for sequential C-code generated from Scilab scripts for Xcos model
elements in order to verify that the outcomes of sequential C-code are complying with the
Xcos model elements. SIL 03 addresses objectives OBJ1 and OBJ5 as follows:

OBJ1: The functionality of the ARGO Toolchain will be demonstrated with conducting
Software-in-the-loop tests on the generated sequential C-code. SIL 03 will verify the correct
code generation of ARGO Toolchain for sequential C-code.

OBJ5: This test case demonstrates the industry standard testing approaches with ARGO
Toolchain for the comprehensive time-critical use case ARGO EGPWS

Approach: The below C-files are subject to testing:
Mode 1: Excessive Rate of Descent:
MODE 1_Excessive Rate of Descent.c
Mode 2: Excessive Terrain Closure Rate:
MODE_2_Excessive_Terrain_Closure_Rate.c
Mode 3: Altitude Loss After Take-off:
MODE 3 Altitude Loss_After Takeoff.c
Mode 4: Unsafe Terrain Clearance:
MODE 4 Unsafe Terrain_Clearance.c
Mode 5: Deviation Below Glideslope:
MODE_5 Deviation_Below_Glideslope.c
Data Output Management:

Data Output Management.c

The approach used in SIL 03 can be presented as open-loop unit testing in a black-box
fashion (Figure 6). The test vectors and expected results are constructed using the
requirements specifications (Figure 7). The interfaces of the components of the EGPWS
model are exercised extensively regarding the range coverage (Figure 8).

Sequential
C- Code

TEST VECTOR 2 -Iléi i
TESTVECTOR 3 “ ——
restvecron o I passep I passeo

Figure 16: Pass/Fail Criteria

Model

The Pass/Fail Criteria of this step is the conformance of the sequential C-code outputs with
the expected outputs which are aligned with the source Scilab/Xcos model output (Figure 9).

18
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

2.1.3.4 Software-in-the-Loop Testing 04 (SIL 04)

Identification: SIL 04 Closed-loop testing for sequential C-code generated from Scilab
scripts for the overall EGPWS Scilab/Xcos model

Purpose:

Scenario tests are executed for sequential C-code generated from Scilab scripts for the
overall EGPWS Scilab/Xcos model in order to verify that the outputs of the sequential C-code
are complying with those of the Xcos model. SIL 04 addresses the objectives OBJ1 and
OBJ5 as follows:

OBJ1: The functionality of the ARGO Toolchain will be demonstrated by conducting
Software-in-the-loop tests on the generated sequential C-code. SIL 04 will verify the correct
code generation of sequential C-code within the ARGO Toolchain.

OBJ5: This test case demonstrates the industry standard testing approaches with ARGO
Toolchain for the comprehensive time-critical use case ARGO EGPWS.

Approach: This is the C-file that is subject to testing:
ARGO_GPWS.c

The approach used in SIL 04 can be presented as closed-loop scenario testing in a black-
box fashion (Figure 11). Closed-loop testing reintegrates the generated script/code back into
the Xcos schema and executes the test scenario with a plant and the SUT (Figure 10). The
plant in the SIL 04 case is the aircraft (Airbus A320) and the system under test is the ARGO
EGPWS.

There is a number of ways for reintegrating the generated script/code back into the Xcos
schema. We have chosen to compile the sequential C-code as a separate process using the
real-time simulation architecture 2Simulate [4] of DLR. Thereafter, the executable that is
used in SIL 04 will later be used in flight simulator integration studies. Scilab/Xcos UDP
Blocks are utilized to integrate the separate ARGO GPWS process back into the model
schema (Figure 17).

nfo L:Log M:MAl N:Net Q:Qlook T:Tasks

Figure 17: SIL 04 ARGO EQPWS and Scilab/Xcos Integration

The scenarios that contain the initial state and the course of events during the test execution
are applied to the test model; the model outputs are compared to expected outputs and the
results are reported. An excerpt from a sample scenario is given in Figure 14. Scenarios are
constructed using the requirement specifications in order to cover the 5 modes of ARGO
EGPWS (Figure 15). The inputs are classified regarding the decision trees of each mode. All
possible output values of modes are addressed by the designed scenarios.

19
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

Sequential
Model C- Code

SCENARIO 1

E
.

DPASSED

SCENARIO 2

FAILED

i hcSED

SCENARIO 3 FAILED FAILED

SCENARIO 4

I 7
AL

Figure 18: SIL 04 Pass/Sail Criteria

The Pass/Fail Criteria of this step is the conformance of the script outputs with the outputs of
the source Scilab/Xcos model. As presented in Figure 18, if the source Scilab/Xcos model is
passing the test in a particular scenario, we are expecting the C-code to pass as well.

2.2 Polarization Image Processing System (Fraunhofer IIS)

Referring to D6.3 Test cases and Design and Implementation [2], phase 2b is the concern of
this documentation, which corresponds to Software-in-the-loop testing. Model-in-the-loop and
Hardware-in-the-loop tests are planned for the second increment of the corresponding
deliverable. Please note that the code generation is considered as a submodule of Software-
in-the-loop testing in the IIS use-case instead of separate modules as in the DLR use-case.

Table 2 in D6.3 shows Test Case Phases vs. Measurements [2]. The objectives that have to
be achieved in this increment are given as OBJ1 and OBJ5 and the first part of OBJ2.

2.2.1 Testing Specifications

The objects to be tested are divided into the following two categories.

Unit Tests: The macros paROI(), paGOCorrection(), paDenoise(), painterpolation(),
paStokes(), paAomp(), paDolp() based on D6.3 Test cases and Design and
Implementation [2] with minor changes (refer to section 2.2.2.2) are tested considering the
principle of least effort. For that purpose, the main Scilab script argo.sci and function
testCaseDemoPolkaFlow() are modified into argo_macroname.sci and
tCDPF_macroname() respectively. The modifications consist of replacing the real data with
some predefined matrix and commenting out all macros other than the one under test. An
exception to this rule is the macro paROI(), which crops the input matrix into the desired size.
For this increment, the TCP/IP interface is left out. In order to execute the unit tests, a small
compiler script unit_test_call.cs is written.

Flow Test: The processing pipeline described in D6.3 Test cases and Design and
Implementation [2] is the concatenation of the macro blocks mentioned in Unit tests. The
main Scilab script argo_predef.sci and function tCDPF_predef() are again the modified

20
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

versions, which feed a predefined matrix into the pipeline and leave out the TCP/IP interface.
In order to execute the flow test, a small compiler script flow_call.cs is written.

The main purpose of this increment will be the correct code generation - parallel as well as
sequential. The resulting matrices from unit and flow tests computed by Scilab, generated
sequential code and parallel code respectively are compared against each other visually for
Scilab output and via the built-in function CompareOutputs() inside the GeCoS framework
for sequential and parallel outputs.

Testing for WCET-awareness and for TCP/IP interface is planned to be tested in the second
increment of this deliverable.

Expected outputs are binaries of generated sequential and parallel C-codes and the
intermediate files to generate those binaries, which are going to be described in detail in the
next section.

2.21.1 Approach

All tests are done in the Eclipse environment of the ARGO Toolchain which is integrated into
a docker image. To be able to test the components, we have to call the corresponding units
from within the GeCoS framework based on the Eclipse environment inside this image.

Following are the necessary steps for an end-user to generate the resulting sequential and
parallel codes.

For Unit Tests, unit_test_call.cs should be executed, which defines the project name and
the relevant output folder. The same should be done with flow_call.cs script for Flow Test.

2.2.1.2 Item pass/fail criteria

An object passes the test if the execution of the sequential or parallel code does not trigger
an error and if the sequential and parallel code provide identical results.

2.2.2 Overview of the Intermediate Steps

Here is a general overview of the intermediate steps for the ARGO Toolchain to generate
sequential and parallel code and its executables. For detailed information please refer to
documents D5.1 Interface Specification [5] and D3.2 Algorithms for cross layer programming
[6]. Greyed-out titles are not subject of this increment.

Scilab to C via Emmtrix Code Generator

Code generation with WCET pragmas and end-user constraints

Intermediate Representation (IR) and Hierarchical Task Graph (HTG) Generation
Generation of GeCoS IR, Static Single Assignment (SSA) and HTG

Code Transformations

Predictability enhancement optimization to expose more parallelism

Core-level code-snippet WCET Estimation

WCET calculations at different granularities using aiT WCET analyzer

Parallelization / Optimize Program Schedule

21
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

Optimal task and data mapping

Parallel Program IR

Extended GeCoS IR with channel-based communication and synchronization
System-Level WCET

Final Core-level WCET Estimation

Architecture Specific Post-Optimizer

Parallel Code Generation

Parallel C code based on IR of parallel program

Sequential / Parallel Code Comparison

2.2.21 Inputs, outputs, and special requirements
Please refer to Section 3.2.2. part h) for the resulting output folder from the toolchain and its
explanations and correspondences to the following steps of the ARGO-Flow.
e Scilab to C via emmtrix Code Generator
Inputs: Scilab source code of unit tests and flow test with end-user constraints

Outputs: Sequential platform independent C code based on C99 with code
annotations as comments or pragmas

Special Requirements: -

¢ Intermediate Representation (IR) and Hierarchical Task Graph (HTG) Generation
Inputs: Annotated C code
Outputs: IR, SSA and HTG with annotations
Special Requirements: -

e Code Transformations
Inputs: HTG with annotations

Outputs: optimized HTG with loop bounds and data array size tags for validity for
scratchpad memory mapping

Special Requirements: -

e Core-level code-snippet WCET Estimation

Inputs: HTG with loop bounds and data array size tags for validity for scratchpad
memory mapping

Architecture ADL, to identify target architecture for aiT config file generation

Outputs: For all tasks (hierarchical and leaf) 2 outputs corresponding to 2 scenarios,
assuming code and data in local scratchpad memory or in external DRAM

Special Requirements: aiT license file

22
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

e Parallelization / Optimize Program Schedule

Inputs: HTG with WCET times for each leaf tasks, End-user constraints, ADL
description with communication timing information

Outputs: Complete map of each leaf task nodes in HTG on available cores, complete
scheduling info of task nodes in HTG, Preliminary decision of data allocation for each
variable to a specific memory hierarch

Special Requirements: -

e Parallel Program IR
Inputs: Annotated HTG from mapping and scheduling
Outputs: 1% version of parallel IR with abstract communication between tasks

Special Requirements: -

e Parallel Code Generation
Inputs: in-memory IR of parallel program

Outputs: set of C source and header files containing the platform optimized parallel
program.

Special Requirements: -

e Sequential / Parallel Code Comparison
Inputs: Application executable
Outputs: Outcome of the test as succeeded or failed

Special Requirements: -

2.2.2.2 User Constraints for Parallelization

There are mainly two emmtrix functions for the 11S-use-case constraints for the generated
code to be data parallel. For more information, please refer the documentation emmtrix Code
Generator Reference Guide [7]

‘//EMX?: emx_var_split(data,sizex,sizey,..); ‘

The function above is used for splitting the data array into sub-tiles in corresponding
dimensions, in order to be able to distribute those tiles among cores. For that purpose the
function below is used before each C-loop, where the data-distribution among cores is
required.

‘ //EMX?: emx_perf_ loopfission(); ‘

23
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

The user should split the data according to the number of cores which are available on the
target hardware, by inserting these functions to the desired locations at the Scilab source
code

The split data arrays are then propagated internally to and from the functions such that the
memory tiles of the scratchpad are fixed with tiles of corresponding data over function calls,
with the requirement that the size of the scratchpad is big enough.

24
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

3. Demonstration and Evaluation Results

3.1 Enhanced Ground Proximity Warning System (DLR)

3.1.1 Code Generation
3.1.1.1 Code Generation 01 (CG 01)
The test is executed in two levels. The first level targeted the model elements that have been

presented in Figure 2, whereas the second level is applied to the overall model.

Scilab scripts are successfully generated for the following model elements and the overall
model:

Mode 1: Excessive Rate of Descent
Mode 2: Excessive Terrain Closure Rate
Mode 3: Altitude Loss After Take-off
Mode 4: Unsafe Terrain Clearance
Mode 5: Deviation Below Glideslope
Data Output Management

The achievement of OBJ1 and OBJ5 is demonstrated by the successful generation of the
Scilab scripts. 30 supported Xcos blocks are described in D3.1 Infermediate Representation
and Sequential Code Generation. In iteration 1 of the ARGO EGPWS 14 of them are used
(Table 1). The list is further enhanced by 4 more blocks that are required later in model
development stage (Table 2).

Table 1: Support Scilab /Xcos Block Utilization in ARGO EGPWS

Scilab Xcos Blocks Status Scilab Xcos Blocks | Status
ABS INTRPLBLK_f Tested
BIGSOM_f LOGICAL_OP Tested
CLOCK ¢ Tested NRMSOM _f

CONST_m Tested OuT f Tested
CONVERT POWBKL_f

DEMUX PRODUCT

DERIV RELATIONALOP Tested
DOLLAR_f Tested SATURATION Tested

25

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

EXTRACTOR Tested SINBLK_f

FROM SQRT

FROMWSB SUMMATION Tested
GAINBLK _f Tested SWITCH2_m Tested
generic_block3 SUPER f Tested
GOTO TANBLK_f

IN_f Tested TrigFun

Table 2: Newly Added Blocks to the Supported List

Scilab Xcos Blocks Status Scilab Xcos Blocks | Status
INTRP2BLK f Tested MUX Tested
MAXMIN Tested TIME_f Tested

For OBJ2, the subjective assessment about the comparison of Scilab/Xcos Front-End and
MATLAB/Simulink would be as follows: The current code generation front-end that is being
provided by Scilab/Xcos is simple to use and straight forward. It provides the comfortable
automation in code generation like MATLAB/Simulink. However, it is to be mentioned that the
maturity and the feature set of COTS Simulink Coder exceed the limits of what is provided
within the scope of the ARGO project. An example that Scilab/Xcos Front-End fails to provide
is diagnostic features which will create warnings for possible problems.

3.1.1.2 Code Generation 02 (CG 02)

In this step, we successfully generated sequential C-code which is located in a folder named
results\scilab2c (Figure 19). The file set includes C files that correspond to x_scenario.sce
and x.sci and all the dependencies with a make file. Figure 19 depicts the output C-files for
the overall ARGO GPWS Scilab script.

26
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1

ARGO

- (= egpws
» (= libraries
~ (= results
« = DLR Use_Case Flow_docker
» = htg_output
» (= paropt
- = scilab2c
[¢ ARGO_GPWS_scenario.gen.c
= ARGO_GPWS_scenario.gen.c.map
{% ARGO_GPWS_scenario.gen.d
[¢ ARGO_GPWS_scenario.gen.h
[ARGO_GPWS_scenario.gen.h.map
[z ARGO_GPWS_scenario.gen.html
[¢ ARGO_GPWS.c
[ARGO_GPWS.c.map
[¢ ARGO_GPWS.h
= ARGO_GPWS.h.map
[¢ emx_codegen_intern.h
[¢ emx_codegen_rand.c
emx_codegen _rand.h
[¢ emx_codegen.h
[2 Makefile.gen
» = seq-wcet
¥ (= SIC
=C
~ (= Scilab
B ARGO_GPWS_scenario.sce
B ARGO_GPWS.sci
b (= tests
(= workspace
B A320EGPWS.zcos
B A320GPWS_Init.sce
B A320GPWS_scifunc.zcos
B A320GPWS.zcos
|2 argo-egpws-project.cs.glog
flow_call.cs
|2 flow_call.cs.glog

Figure 19: ARGO Toolchain Project Structure

The following steps were followed to prepare the setup for the test case:

e The Docker image that contains the ARGO Toolchain is set up.

e The projects are prepared for each code generation case.

flow_call.cs argo-egpws-project.cs [ARGO_GPWS.c 2
1@ // Automatically generated by emmtrix Code Generator (May 23 2017 09:23:15)[]
5
6 #include <math.h>
7 #include <stdbool.h>
#include <stdint.h>
10 #include "emx_codegen.h"

12 #include "ARGD_GPWS.h"

14 static EMX INLINE double EMX max d64 d64 d64(double srcl, double src2);

15

16 static EMX_INLINE double EMX_max_d64_d64_d64(double srcl, double src2) {
17 return srclesrc2 7 src2 : srcl;

18

19

20

21-void find s_4(int32 t * const k data, size t k sizel2], bool X datal5]) {
22 size t i3;

23

24 #pragma EMX_PERFINFO_WORSTCASE 180 1

25

26 /f =<lib=/find_s.sce(4-6): 1if (nargin < 2)

27

28 // <lib>/find s.sce(8:10-47): emx_size(k, 1, O:emx_scc_getmax(n))

29 // <lib>/find_s.sce(9:2-9): k = [1;

30

31 k _sizel0] = 0;

32 k sizelll = 0;

Figure 20: ARGO GPWS Code Excerpt

B

27
Version: v1.01 / FINAL

Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

When the compiler scripts are executed, sequential C-code is successfully generated. A
sample excerpt is given in Figure 20. The automation script compiled the auto generated file
and executed it with random inputs.

The achievement of OBJ1 and OBJ5 is demonstrated by the successful generation of the
sequential C code. For OBJ2, the subjective assessment about the comparison of ARGO
Toolchain and MATLAB/Simulink would be as follows: Currently, the ARGO Toolchain is
under development. The snapshot that was executed in this test was stable and successfully
generated code, but the current user experience and feature set is not yet comparable to
Simulink Coder or other COTS code generation tools.

3.1.1.3 Code Generation 03 (CG 03)

In this step, we successfully generated parallel C-code for a 4-core target architecture. One
of the cores is assigned to data processing and the code is optimized for the other 3 cores.

Figure 21: HTG Excerpt from Optimized Parallel ARGO GPWS Code

The following steps were followed to prepare the setup for the test case:

e The Docker image that contains the ARGO Toolchain is set up.
e The projects are prepared for each code generation case.

When the compiler scripts are executed, parallel C-code is successfully generated. The
generated code files were located in a folder named results\codegen\pout. The Hierarchical
Task Graph (HTG) files for the optimized parallel C-code are presented under
results\paropt\dotsol. An excerpt from the HTG of optimized parallel C-code for ARGO
EGPWS is given in Figure 21. Three different colours designate three processors.

The generated parallel C-code was compiled using InvasIC API on PC platform (in the
ARGO Docker container) and the executable is executed with random inputs.

The achievement of OBJ1 and OBJ5 is demonstrated by the successful generation of the
parallel C code. For OBJ2, the subjective assessment about the comparison of ARGO

28
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

Toolchain and MATLAB/Simulink would be as follows: Currently, the ARGO Toolchain is
under development. Parallel code generation is the core focus of the development effort. The
shapshot that was exercised in this test was just stable. Successful parallel code generation
was only possible with heavy involvement of the developers. The current user experience is
not yet comparable to Simulink Coder or other COTS code generation tools.

3.1.2 Software-in-the-Loop Testing
3.1.2.1 Software-in-the-Loop Testing 01 (SIL 01)
The tests are executed using a test harness developed by DLR. The harness executes the

Scilab scripts with the selected test inputs, compares their outputs with the expected outputs
and generates test reports. A sample test report is provided in Figure 22.

[D:AWerk\ARGO\svn_DLR\EGPWS'dev\Scilab 5.5.2\tests\SILO3\res\mode Lscript RA10varVS.txt - Notepad++ . QRPR— o e] |
Datei Bearbeiten Suchen Ansicht Kodierung Sprachen Einstellingen Makro Ausfiihren Erweiterungen Fenster 2 X
L= 3 Ta Bl | [l 2| EBF = 1EER = RBE|IE
=l mode Tscript_RA1DvarVs ot .3}
1 =————=————=————T{INIT TEST=————————=——=——
2 File: 'RRlOvarVs.sge' - script
3 Date: 2017-06-22 9:59
4
6 LAT = 0 LONG = 0 HDG = 0 ALT =0 &S =10
| SINK RA |
| Result | RA1 | V5/-1000 | output | expVal | simval | Output | expval | simval |
11 | PASSED | 10 | 0.% | ERD | 0 | 0 | ERD int | 0 | 0 |
12 | PASSED | 10 | 1.5 | ERD | 1 | 1 | ERD int | 1 | 1 |
13 | PASSED | 10 | 3.0 | ERD | 1 | 1 | ERD int | 1 | 1 |
14 | PASSED | 10 | 4.0 | ERD | 1 | 1 | ERD int | 1 | 1 |
15 | PASSED | 10 | 5.5 | ERD | 1 | 1 | ERD int | 1 | 1 |
1¢ | PASSED | 10 | 7.5 | ERD | 1 | 1 | ERD int | 1 | 1 |
17 | PARSSED | 10 | 8.0 | ERD | 1 | 1 | ERD int | 1 | 1 |
1 | PASSED | 10 | 10.0 | ERD | 1 | 1 | ERD int | 1 | 1 |
1 |
Normal text file length : 1103 lines: 19 Ln:18 Col:1 Sel:0]0 Dos\Windows ANSI as UTF-8 INS

Figure 22: Sample SIL 01 Test Report

In total, 358 test cases are executed for the following 6 scripts under test with the following
distribution:

Mode 1: Excessive Rate of Descent: 67 Test Cases
Mode 2: Excessive Terrain Closure Rate: 14 Test Cases
Mode 3: Altitude Loss After Take-off: 157 Test Cases
Mode 4: Unsafe Terrain Clearance: 16 Test Cases
Mode 5: Deviation Below Glideslope: 90 Test Cases

Data Output Management: 14 Test Cases

All test cases were rated successful. The achievement of OBJ1 and OBJ5 is demonstrated
by verifying that the Scilab scripts generated from Scilab/Xcos blocks that are listed in Table
1 and Table 2 are functioning properly in the comprehensive time-critical use case ARGO
EGPWS.

29
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

3.1.2.2 Software-in-the-Loop Testing 02 (SIL 02)

The tests are executed using a test harness developed by DLR. The harness executes the
scenarios, compares the EGPWS outputs in these scenarios with the expected ones and
generates test reports. An excerpt from a test report is provided in Figure 23.

Sce MiL Mode2 Scel5 passed
Sce MiL Mode2 Sceld passed
Sce MiL Mode2 Scel? passed
SceMiL Mode2 Scell passed
Sce MiL Mode2 Scel9 passed
Sce_ MiL Mode2 Sce20 passed
Sce MiL Mode2 Sce2l passed
Sce_ MiL Mode2 Sce22 passed
Sce MiL Mode2 Sce23 passed
Sce MiL Mode2 Sce2d passed
Sce MiL Mode2 Scel5 passed
Sce MiL Mode2 Sce2f passed
Sce MiL Mode2 Sce27 passed
Sce MiL Mode2 Sce28 passed
Sce_MiL_Mode2_S5ce29 passed
Sce_MiL Mode2 Sce30 passed

e i i i i = =R L e i

L444444444444444

Figure 23: An Excerpt from a Sample SIL 02 Test Report

In total, 1061 test cases are executed regarding the requirements of 5 modes with the
following distribution:

Mode 1: Excessive Rate of Descent: 13 Test Cases
Mode 2: Excessive Terrain Closure Rate: 252 Test Cases
Mode 3: Altitude Loss After Take-off: O Test Cases

Mode 4: Unsafe Terrain Clearance: 759 Test Cases

Mode 5: Deviation Below Glideslope: 28 Test Cases

When these 1061 test cases are applied to the ARGO EGPWS Scilab/Xcos model (Model-in-
the-Loop testing), currently 770 of them are rated successful. When the same tests are
applied to the auto-generated Scilab scripts, the failing test cases are conformant with the
ones failing with the Xcos EGPWS model. So the Xcos model and the auto-generated Scilab
script are giving the same outputs in all cases.

It is important to note that the debugging and bug fixing of Xcos EGPWS model for the failing
test cases is in progress.

30
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

The achievement of OBJ1 and OBJ5 is demonstrated by verifying that the Scilab scripts
generated for the Scilab/Xcos blocks that are listed in the Table 1 and Table 2 are
functioning properly in the comprehensive time-critical use case ARGO EGPWS.

3.1.2.3 Software-in-the-Loop Testing 03 (SIL 03)

The tests are executed using a test harness developed by DLR. The harness executes the
sequential C-files with the selected test inputs, compares their outputs with the expected
outputs and generates test reports. A sample test report is provided in Figure 24.

|Qatei Bearbeiten Format Ansicht }

File: 'RAlOvarvs.sce' - C_seq
Date: 2017-06-22 12:10

LAT = 0 LONG = 0 HDG =0 ALT =0 as =0

| SINK RA |
RAL | ws/-1000 | output | expval | simval | output

10 | |

Result expval | simval |

| |

| PasseD |

PASSED	
PASSED	
PASSED	10
PASSED	10

ERD int
ERD int
ERD int

|

| ERD | |
|

i |

ERD int |
|

|

|

| ERD |
| ErD |
| ErRD |
| ERD | ERD int
PASSED I I
PASSED | |
PASSED | |

ERD int
ERD int
ERD int

ERD
ERD
ERD

Cmlund e O
COoOwnwnoouwn
il e el =]
il e el =]
il e el =]
RFHRERRRERO

=

Figure 24: Sample SIL 03 Test Report

In accordance with SIL 01, 358 test cases are executed for the following 6 scripts under test
with the following distribution:

Mode 1: Excessive Rate of Descent: 67 Test Cases
Mode 2: Excessive Terrain Closure Rate: 14 Test Cases
Mode 3: Altitude Loss After Take-off: 157 Test Cases
Mode 4: Unsafe Terrain Clearance: 16 Test Cases
Mode 5: Deviation Below Glideslope: 90 Test Cases

Data Output Management: 14 Test Cases

All test cases were rated successful. The achievement of OBJ1 and OBJ5 is demonstrated
by verifying that the auto-generated sequential C-code generated from the Scilab/Xcos
blocks that are listed in the Table 1 and Table 2 is functioning properly in the comprehensive
time-critical use case ARGO EGPWS.

3.1.2.4 Software-in-the-Loop Testing 04 (SIL 04)

The tests are executed using a test harness developed by DLR. The harness executes the
scenarios, compares the EGPWS outputs in these scenarios with the expected ones and
generates test reports.

In accordance with SIL 02, 1061 test cases are executed regarding the requirements of the 5
modes with the following distribution:

Mode 1: Excessive Rate of Descent: 13 Test Cases

31
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

Mode 2: Excessive Terrain Closure Rate: 252 Test Cases
Mode 3: Altitude Loss After Take-off: 9 Test Cases
Mode 4: Unsafe Terrain Clearance: 759 Test Cases

Mode 5: Deviation Below Glideslope: 28 Test Cases

As mentioned in SIL 02, when these 1061 test cases are applied to the ARGO EGPWS
Scilab/Xcos model (Model-in-the-Loop testing), currently 770 of them are rated successful.
When the same tests are applied to auto-generated sequential-C code, the failing test cases
are conformant with the ones failing with Xcos EGPWS model. So the Xcos model and the
auto-generated sequential-C code are giving the same outputs in all cases.

It is important to note that the debugging and bug fixing of the Xcos EGPWS model for the
failing cases is in progress.

The achievement of OBJ1 and OBJ5 is demonstrated by verifying that the auto-generated
sequential C-code generated from the Scilab/Xcos blocks that are listed in the Table 1 and
Table 2 is functioning properly in the comprehensive time-critical use case ARGO EGPWS.

3.2 Polarization Image Processing System (Fraunhofer IIS)

3.2.1 Overview of the Test Results

For the unit tests, each of the following modules has been tested separately. In order to keep
the testing simple, a constant matrix or tensor of appropriate dimension has been provided
as input data, which allows for easy testing the numerical correctness of the results

The predefined matrix replacing the real input image data is generated as follows:

polTestPattern = [90, 135;
45, 0 1;
F = uintl6 (repmat (polTestPattern,244,324));

The predefined matrices for the used Gain/Offset Correction are as follows:

polTestPattern = [90, 135;

45, 0 1;
GainFrame = double (repmat ((polTestPattern./1.0)"',240,320));
OffsetFrame = double (repmat ((polTestPattern./8192.0)"',240,320)) ;

The chosen pattern is easy to analyze for the validation of the outputs from Scilab and
generated sequential and parallel C codes.

Following the principle of least effort, and in order to comply with the original
dimensionalities, the input and output data arrays of the macros of unit tests are replicated to
an array of appropriate dimension, if necessary.

The number of tiles for data parallelization of an array is chosen as 4. The tests are compiled
for the target platform InvasIC emulator. The target contains 3 cores for data processing and
1 core for data communication. The program could still be parallelized.

32
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

The objective of the unit tests is to verify the functional correctness of the generated C code
(parallel and sequential), while the aspects related to WCET awareness or performance are
not considered in this stage of the project.

For each module, three unit tests have been conducted:

e A test of the original Scilab model (which is actually not a test but provides us with
results considered as functionally correct, i.e., the ground truth). The Scilab model is
executed on a PC platform (Linux or Windows)

o A test of the sequential C code generated by Emmtrix software tools inside the
toolchain. The sequential C code is compiled for and executed on a PC platform

o A test of the parallel C code generated by the ARGO parallelizer. The parallel C code
is compiled for and executed on the InvaslC target platform emulator.

The outputs of the three tests have been compared against each other. If they are identical,
the test is considered as passed, which is the case for all tested modules.

In the following paragraphs, we give the details of the unit tests for each module. In order to
preserve the output arguments aomp and dolp of macros tCDPF_macroname(), the
generated output matrix is either replicated to a size of 640x960 if it is of size 640x480, or
arguments aomp and dolp are increased in size in case of larger output arrays of size
640x480x3 or 640x480x4. (e.g. palnterpolation generates a tensor of dimensions 640x480x4,
which is stacked into the output arguments (aomp & dolp) pairwise.)

Since the dimensionalities in Flow Test matches the original code, there was no need for
such manipulations .

The figures in Section 3.2.2 show the parallelization of units for the Unit Tests and of the
processing pipeline of the whole code for the Flow Test. The parallelization degree can be
seen in the number of different colors used for rectangular nodes. Note that those in the
graph for the Flow in Figure 32 correspond to blocks followed one by another representing
our whole pipeline.

For a better view of the graphs, please refer to the directory structure explanation in the next
section, to find the locations of these graphs. If you take a closer look, you can see black and
red arrows differentiating between tasks with real data dependencies and without any
dependencies, but still scheduled sequentially, because of lack of resources. This might
mean that there is room for more parallelization, but not necessarily. There are tasks that are
connected with an arrow, bearing the description “inactive”. This means that no
communication takes place between tasks, suggesting that these tasks are on the same
core.

3.2.2 Detailed Test Results

a) paROI(): Succeeded
Input data: Constant 648x488 matrix
Output data: Constant 640x480 matrix

33
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

paROI_HT244_SR18 [0-0] PE: 0

‘PAROL8 main: 12 main-il § maite:i11

:mnﬂmsu ICDPF_paROL-:i17 {CDPF_paROL:i15

tCDPF_paROI::i3 paROL-i6 main:iil4 paROL:i3

{CDPF_paROI: 10 ICDPF paROL:il4 paROL:il main:
CDPF. ::i6 ICDPF_paROI:i19

inactive

~ .
“_inactive
-

A
KPRO‘[_HTJ.'D:FM m:[msa'rmam--maamom]]

(4915200/-) paROL:rei_2_data[4915200] /inactive

paROI_HT244_LT24 [.1[)91137-1"1 1091]]1'172] FE: 1
[main:315 ICDPF_paROL:i11 ICDPF_paROL 20 main-init]
CDPF_paROL:i4 mai::i16 {CDPF_paROL:19 paROL:id
mai:i13 tCDPF_paROL:i7 main=i20 ;: sideeffect_stdout
main::i18 tCDPF_paROL:i16 ICDPF_paROL:il
{CDPF_paROL:i13 tCDPF_paROL:i 1§ main:i3
main:i6 paROL:i 8 maim:i1 2 main:i15 main::i11
tCDPF_paROL:il2 ICDPF_paROL:i17 tCDPF_paROL:i15
CDPF_paROL:i3 paROL:i6 mainc:il4 paROL:i3
{CDFF_paROI::i10 ICDPF_paROL:i14 paROL:i1 main:is
main:i19 (CDPF_paROL:i6 (CDPF_paROL:i19
main:;il7 paROL:5 tCDPF_paROL::i8 (CDPF_paROL:i2
‘main:i7 paROL:i7 ICDPF_paROL:iS |

*(4915200/-) paROL roi_0_data[4915200] inactive

PpaROI_HT244_S1243 [41mmon-4mnm]m 0
tCDPF_paRO] ini

‘maite:i18 (CDPF_paROL:i16 tCDPF_paROLTL
ICDPF_paROL13 1CDPF_paROL:i18 maii:id
imin 16 paROL-i8 main: {12 main:i15 main:i11
tCDPF_p-mﬂD i12 ng:l?r_pmlxilv ICDPF_paROL:i15
6 14 paROL:

FF_paR
ccm’r_p-am. i10 {CDPF_paROL:iL4 paROL:
miain:i19 ICDPF_paROL:i6 ICDPF_paROL:
‘main:;i17 paROL:iS tCDPF_paROL:i8 {CDPF. _punm. i2
main::i7 paROL:i7 (CDPF_paROL: |

Figure 25: Parallelization for paROI unit

b) paGOCorrection():Succeeded
Input data: Constant 640x480 matrix
Output data: Constant 640x480 matrix

34

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

06400/-) - :g_OffselFrame_data,;:g_GainFrame_data pacioCy

(34406400/-) paGOCorrection™ image_0_data“g_GainFrame_data, &mm_wswmﬁm.ﬁm_mnrm vsl:[]umum—ssnmmu

ctive

paGOCorrection_HT71:For PE1 (38691 wwmuszmou +(4915200/-) paGOComection-image_|_datal4915200]

KIGOCOH’HEIILBTJGS:FH PEIL :[1M9440000-7554027I40ﬂ

inactive

ﬁuaomnalm_m‘us:mm:pssllmm-?s!lﬁlsﬂuﬂ

ctive (49152001 i 1_daa]: | Ansctive

lg-oocmm_mum PEL |1nxn1mnmm:u:mu (1915200/-) paGOCarrection image_2_data[4915200|

(4915200/-) paGOCorection image 0_dita[4915200]

Figure 26: Parallelization for paGOCorrection unit

c) paDenoise():Succeeded
Input data: Constant 640x480 matrix
Output data: Constant 640x480 matrix

35
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

Figure 27: Parallelization for paDenoise unit

d) painterpolation():Succeeded
Input data: Constant 640x480 matrix
Output data: Constant 640x1920 matrix

36

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

Figure 28: Parallelization for painterpolation unit

e) paStokes():Succeeded
Input data: Constant 640x1920 matrix
Output data: Constant 640x1440 matrix

37

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

38

Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1

ARGO

Figure 29: Parallelization for paStokes unit

f) paAomp():Succeeded
Input data: Constant 640x1440 matrix
Output data: Constant 640x480 matrix

puopHTIO2_SK18 (001 FE: 0
D13 (CTHT. el vw!Lw\
33 padomy:id

/ .
/ ALZIEP196001) paAven oKeE2_JathphAcunp 0K eS2_OM PO sKEAZ_CHA pRACIID: ok (it 13529600]
.

[phhang, 7066272] PEL [SM811726-16032154113]

e _(AT48000%) paAompy: sokes_2_data[14745600]

[e

— |
‘I[n 1 (ORS00 paompe:s_1_data pa A 5 1_datal R340 | T inactive l@n 300 o 50 e 91 nq/(m 200-) pa Ao 53 dataf 915209
". \ b i s o s s] -

i |

E..mq,,mw\-mm-|wmm,»umw.m|1 | [ﬁ-ammnrwmmnmmm.nwau
- \Q" “.,‘_,1‘;;.:;—-VJK.,_,_..,,_cm

(SN T ST I T
13 CEPF nAang4 ICDFF puaong
a1 oty Jmim.mmm
kg 116 paAcenye CDPF paAog i35
PaAcmi2S 18 o 24 CDEY o 137
ICDFF_paAoepil0

S(4TA5600-) pacmpe stokes_3_dala] 1147 45600] e \‘\
_ - /
-]
. : — | ——
S
| / E ST | T)| —L
{ - [
T imadive T nactive

\

[D |
|
(o£3040) pa o3 o paAeecs) (58304001 \9112001) padcenpcsomp 2 014200] \ e
\

\I‘ /‘

=]
K;-n T |

110 mam: 319 paAompid

ICDFF_paomip

PGt (COPF_paAomg:is3 pad ompril (CDFE_pad omp:10
prAowg 23 . adecilest_sdout i

-n,dnwinmm]uswm;m)

paompi3
wallmlmwli
st pa Ao

A
17 madei1 2 mliummmr.m

Figure 30: Parallelization for paAomp unit

g) paDolp():Succeeded
Input data: Constant 640x1440 matrix
Output data: Constant 640x480 matrix

39
Version: v1.01 / FINAL

Public (PU)

D6.4 Test Case Demonstration and Evaluation Report

— Increment 1 ARGO

L TSI SIS (0] FE: O
paDolp:i16 paDolpi1 4
ot

mr_pmwmpn!
m._nnmlncnmmi; 418
1CDFE_paDopil pD o7 ma 18 allsymbet
ICDFF. 5 ICIPF
S ”#54"{5‘"% wé%’“"'"’n
i
-ﬂlgnhi ICDPF_paDiolp:i30 paDalp 5

pnupnmﬂdgmnmﬁq; e T
_p-u-t]; L4 ICDPF_paDolgy:il

1

35020600/} paDlp-stokes2_datspaDholpestekesd_dita gaDolye stokes?_dta gaDiolp-stokes?_data[138919600]

paDilp_BT263 For PED/[235029600-15591910754] PE1:[S30841728-25206996657]
— — - R
- S~2B91200) pADolpsckes_2_dia aDolprokes 2 GHa[z8151I00] —~ S45M91200/) paDelpstokes|_datnaolptckss_1_ 29491200

W) Q‘w) paelpcstckes 0_data paalp:tokes_0_dita[29 mmﬁmap HT481:For FEL[2621401984-148189% wuﬂ Edde mmmmlmm 14n1wwu (29491 200) paDclp:stokes_3_cata pabdolp sokes_3_data] 20491300]
|
- | e |
— - ¥

Euwumwrwm[mmw:u-zwmmuu

'K...M..wm;-p..ps,.-[m;.m-m.z—.»mmhu ‘

fnsctive

— |
AROL \paRe 316 puDelprils \ \
Gcttee : \
paROL 1S ‘ \ |
D paDulpc dymi_1 \
(Enll T 0T (I \ (49132001 aDckpricolp 2 s 915200] fuactive |
COPF pabig-i34 (CDPF pab |
p ol callSymbol_3 1D FF)u alp wp-mip
palp 9 {COPF.padal. 121 ICDPF. pabelp 17 pabolp caiSymbcd 2 |
ot D ol 115507 Sl /
| /
\ — - \ /
| —
hm.uw Y20 prose dcip_0_duapao1320%) factiva
\ |
f /
| /

pallolp HT#17, L'ﬂév\ 2707500084 1107100 P
[FaROE6 10 7 paDolp 116 paDalp::il4
udeetect_stdonl ‘ \ f

DT pibetp o Dol
DEF_paDolp-iLé
Dip- catsymb 1
[\ /
/ /

PAROELS mainiLL paROL
D pD AR ey

olp i |
PeDolp i it ||
\CDPY pabolp 131 ICDPE [\
paDolp:allymbel_3 1CDFF _paDiaip::130 paDolp:is f‘
paDel 5 ICDPF paDgrA2T (CDPE. aDolgt 17 puaipt callSymbel 2 \
PAROL i2 {CDFF_paDolp i14 {CDPF_paDalp:il {
1

; _pi.Dnlchllm);!_plde

Figure 31: Parallelization for paDolp unit

h) Flow Test: Succeeded
Input data: Constant 648x488 matrix

Output data: Constant 640x480 matrix

Figure 32: Parallelization for Flow

The log file for each test can be found in the corresponding directory of the test. All the
necessary output files mentioned in Section 2.2.2.1 are generated. To elaborate this further,

we have to look at the structure of this directory:

results.
F—1IIS Flow Test predef

40
Public (PU)

Version: v1.01 / FINAL

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

codegen

parallel
reordered
sequential
——htg output

dotty htg

dot ssa

dot ssa htg
——paropt

dots

dotsol

dot before paropt
scilab2c

L obj

seg-wcet

ais

codegen

configure

dotty ANNOTATED

-~ CDFG

L HTG

——XTC

——XML Reports EM
XML Reports SPM
——IIS Unit Tests predef
macronamel

codegen

parallel
reordered
sequential
——htg output

dotty htg

dot ssa

dot ssa htg

IIS Use Case Unit Tests
——paropt

dots

dotsol

dot before paropt
scilab2c

41
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

codegen

configure

dotty ANNOTATED

-~ CDFG

L HTG

——IIS Use Case Unit Tests
——XTC

—XML Reports EM

XML Reports SPM

——— macroname?

Since Flow Test is a standalone project, it does not have subprojects, as in the case of Unit
Tests, which are subdivided to units (macros). Each project folder has generated console log
files in its main directory.

scilab2c directory consists of generated .c and .h files from the first step of Section 2.2.2.1

htg_output directory consists of generated HTG graphs with annotations for IR & SSA, which
correspond to the second step of section 2.2.2.1

seq-wcet folder corresponds to the fourth step of section 2.2.2.1 and consists of HTG graphs
after the Code Transformation step, the sequential C code for core-level code-snippet WCET
estimation and output files of the aiT analysis.

paropt folder corresponds to the fifth and sixth step of Section 2.2.2.1 and consists of HTG
graphs for parallel program and parallel program IR

codegen folder consists of sequential and parallel program C source files.

eval folder has the generated executables and the resulting output values in corresponding
log files for sequential, reordered (again sequential but adapted to toolchain) and parallel (for
InvaslC emulator) programs.

The objectives of the workpackage for this increment can be found in D6.3 Test Case
Phases vs. Measurements [2]. For the IIS use-case, the evaluation of the objectives is as
follows:

OBJ1: It was easy to integrate our Scilab code into the ARGO Toolchain and to retrieve
some initial results.Our phase 2b “Software-in-the-loop” tests are conducted successfully.

OBJ2: Objective 2 is partially achieved for this increment. The second part of this objective
will be considered in iteration 2 of this document.

For the first part of the objective, we can also divide our evaluation into two.

The initial assessment for the development time can be found in D6.2 Test Cases and
Requirements Specification [3]. This assessment suggests a development time reduction
from 8 months to approximately 2.5 months. Until now, we have effectively invested about 7
weeks for the integration of our code into the ARGO Toolchain. The waiting periods for
required licenses and other delays caused by administrative issues and other projects are
discarded by that assessment.

Compared to our initial assessment this value might look much less, but please note that the
Xcos part of the phase 2a “Model-in-the-loop” should be added to this time afterwards, which
is planned for the second increment of this document, because of the unsuitability to the IS
use-case.

OBJ5: Here again, we will discard the phase 2a “Model-in-the-loop” and phase 3 “Hardware-
in-the-loop” parts of the objective and stage them to the second increment of this document.

42
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

Apart from those, our Unit Tests and Flow Test representing our whole pipeline have
successfully run on the InvaslC platform emulator.

43
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

4. Conclusion and Future Work

4.1 Evaluation Summary

In this first increment we successfully conducted an evaluation of the ARGO Toolchain. It
was concluded with successful code generation and extensive Software-in-the-loop testing
(more than 1000 test cases).

Regarding the presented use cases, the number of tasks currently included is limited and the
consortium is to extend it within the development framework of the ARGO Toolchain. The
developed evaluation infrastructure will be readily available for further development of the
ARGO Toolchain and further expanded and enhanced for the second increment where
Hardware-in-the-loop testing and further evaluation will be performed.

4.2 Future Work

4.2.1 Enhanced Ground Proximity Warning System

The next step for the DLR use-case is to develop a better way to reintroduce sequential and
parallel C-code into Scilab/Xcos schemas for a streamlined test flow for SIL 04 and SIL 05.
Next, the tests will be integrated to the ARGO CI in order to check the ARGO Toolchain in an
automated manner. While it is still too early to really evaluate the user experience, the
preliminary results show that the toolchain can be (easily) integrated and generates correct
code.

Afterwards, WCET constraints will be considered and user intervention scenarios in
parallelization will be exercised.

4.2.2 Polarization Image Processing System

The next step for the 1IS use-case is to include a TCP/IP interface and eventually the whole
flow to the toolchain environment and complete the tests for it. Afterwards, WCET constraints
will be considered. Furthermore, the model is planned to be specified in XCOS instead
textual Scilab code and will be extended by at least one more computation intensive
processing step.

44
Version: v1.01 / FINAL Public (PU)

D6.4 Test Case Demonstration and Evaluation Report — Increment 1 ARGO

5. References

[1] IEEE Standard for Software and System Test Documentation,” in IEEE Std 829-2008 ,
vol., no., pp.1-150, July 18 2008 doi: 10.1109/IEEESTD.2008.4578383

[2] ARGO Deliverable D6.3 Test cases and Design and Implementation, the ARGO
Consortium, Umut Durak (DLR), David Mueller (DLR), Koray Kasnakli, Dr. Imen Fassi, Dr.
Isabelle Puaut, Dr. Panayiotis Alefragis, Dr. Marcus Bednara, Version 1.05, March 2017.

[3] ARGO Deliverable D6.2 Test Cases and Requirements Specification, the ARGO
Consortium, Umut Durak (DLR), David Mueller (DLR), Marcus Bednara (Fraunhofer IIS),
Version 1.00, June 2016.

[4] JUrgen Gotschlich, Torsten Gerlach and Umut Durak. 2014. 2Simulate: A distributed real-
time simulation framework, ASIM STS/GMMS Workshop, Reutlingen, Germany.

[5] ARGO Deliverable D5.1 Interface Specification, the ARGO Consortium, George Goulas,
Panayiotis Alefragkis (TWG), Steven Derrien, Isabelle Puaut (UR), Simon Reder, Harald
Bucher (KIT), Reinhold Heckmann (Absint), Version 1.00, June 2016.

[6] ARGO Deliverable D3.2 Algorithms for cross layer programming, the ARGO Consortium,
Panayiotis Alefragkis (TWG), TWG, KIT, Scilab, UR1, Version 0.07, July 2017.

[7]1 emmtrix Code Generator Reference Guide, emmtrix Technologies GmbH, April 2017

45
Version: v1.01 / FINAL Public (PU)

